
Boryana Stamova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000715/publications.pdf Version: 2024-02-01

RODVANA STAMOVA

#	Article	IF	CITATIONS
1	Brain and Blood microRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 92-101.	2.4	458
2	Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 185-199.	2.4	423
3	Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 888-901.	2.4	405
4	Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87, 2324-2332.	1.5	374
5	Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Frontiers in Aging Neuroscience, 2018, 10, 42.	1.7	249
6	microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS ONE, 2014, 9, e99283.	1.1	165
7	Altered Expression of Long Noncoding RNAs in Blood After Ischemic Stroke and Proximity to Putative Stroke Risk Loci. Stroke, 2016, 47, 2896-2903.	1.0	131
8	Gene Expression Profiling of Blood for the Prediction of Ischemic Stroke. Stroke, 2010, 41, 2171-2177.	1.0	126
9	EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theoretical and Applied Genetics, 2006, 113, 186-195.	1.8	117
10	Signatures of cardioembolic and largeâ€vessel ischemic stroke. Annals of Neurology, 2010, 68, 681-692.	2.8	114
11	Gene Expression in Peripheral Immune Cells following Cardioembolic Stroke Is Sexually Dimorphic. PLoS ONE, 2014, 9, e102550.	1.1	84
12	Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Molecular Biology, 2007, 63, 651-668.	2.0	82
13	Prediction of Cardioembolic, Arterial, and Lacunar Causes of Cryptogenic Stroke by Gene Expression and Infarct Location. Stroke, 2012, 43, 2036-2041.	1.0	77
14	Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1374-1383.	2.4	73
15	Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1513-1531.	2.4	71
16	Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theoretical and Applied Genetics, 2000, 101, 527-537.	1.8	70
17	Myelin Basic Protein Associates with AβPP, Aβ1-42, and Amyloid Plaques in Cortex of Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2015, 44, 1213-1229.	1.2	67
18	Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Molecular Autism, 2015, 6, 37.	2.6	65

BORYANA STAMOVA

#	Article	IF	CITATIONS
19	Effects of Gender on Gene Expression in the Blood of Ischemic Stroke Patients. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 780-791.	2.4	64
20	Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls. Neurotoxicity Research, 2011, 19, 1-13.	1.3	60
21	Myelin Injury and Degraded Myelin Vesicles in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 232-238.	0.7	60
22	Profiles of lacunar and nonlacunar stroke. Annals of Neurology, 2011, 70, 477-485.	2.8	59
23	Construction and Evaluation of cDNA Libraries for Large-Scale Expressed Sequence Tag Sequencing in Wheat (Triticum aestivum L.). Genetics, 2004, 168, 595-608.	1.2	57
24	Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism. Neurotoxicity Research, 2011, 19, 31-48.	1.3	57
25	Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene, 2012, 495, 120-127.	1.0	55
26	Distinctive RNA Expression Profiles in Blood Associated With White Matter Hyperintensities in Brain. Stroke, 2010, 41, 2744-2749.	1.0	54
27	Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. Journal of Neuroinflammation, 2019, 16, 56.	3.1	51
28	Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study. Translational Stroke Research, 2015, 6, 284-289.	2.3	49
29	The X-Chromosome Has a Different Pattern of Gene Expression in Women Compared With Men With Ischemic Stroke. Stroke, 2012, 43, 326-334.	1.0	48
30	GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: A pilot study. Brain Research, 2011, 1381, 228-236.	1.1	47
31	RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke. Annals of Neurology, 2013, 74, 232-240.	2.8	47
32	Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theoretical and Applied Genetics, 2002, 104, 840-844.	1.8	45
33	The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1818-1835.	2.4	45
34	Distinctive RNA Expression Profiles in Blood Associated With Alzheimer Disease After Accounting for White Matter Hyperintensities. Alzheimer Disease and Associated Disorders, 2014, 28, 226-233.	0.6	43
35	Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 2016, 87, 2198-2205.	1.5	40
36	lschemic Transient Neurological Events Identified by Immune Response to Cerebral Ischemia. Stroke, 2012, 43, 1006-1012.	1.0	38

3

BORYANA STAMOVA

#	Article	IF	CITATIONS
37	MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 775-786.	2.4	38
38	Inflammation Combined with Ischemia Produces Myelin Injury and Plaque-Like Aggregates of Myelin, Amyloid-β and AβPP in Adult Rat Brain. Journal of Alzheimer's Disease, 2015, 46, 507-523.	1.2	36
39	Brief Focal Cerebral Ischemia That Simulates Transient Ischemic Attacks in Humans Regulates Gene Expression in Rat Peripheral Blood. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 110-118.	2.4	33
40	Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains. Journal of Child Neurology, 2015, 30, 1930-1946.	0.7	33
41	Gene Expression Profiling of Blood in Brain Arteriovenous Malformation Patients. Translational Stroke Research, 2011, 2, 575-587.	2.3	31
42	Analysis of the wheat endosperm transcriptome. Journal of Applied Genetics, 2006, 47, 287-302.	1.0	30
43	Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Research, 2012, 200, 593-601.	1.7	29
44	Inhibition of Src Family Kinases Protects Hippocampal Neurons and Improves Cognitive Function after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1268-1276.	1.7	28
45	Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1398-1416.	2.4	27
46	Y Chromosome Gene Expression in the Blood of Male Patients With Ischemic Stroke Compared With Male Controls. Gender Medicine, 2012, 9, 68-75.e3.	1.4	25
47	Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Molecular Autism, 2017, 8, 4.	2.6	25
48	Inhibition of Src family kinases improves cognitive function after intraventricular hemorrhage or intraventricular thrombin. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2359-2367.	2.4	25
49	Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Translational Stroke Research, 2021, 12, 754-777.	2.3	24
50	Bacterial lipopolysaccharide is associated with stroke. Scientific Reports, 2021, 11, 6570.	1.6	24
51	Gene expression in blood is associated with risperidone response in children with autism spectrum disorders. Pharmacogenomics Journal, 2012, 12, 368-371.	0.9	23
52	HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25.	2.3	23
53	Genome response to tissue plasminogen activator in experimental ischemic stroke. BMC Genomics, 2010, 11, 254.	1.2	17
54	Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain, 2022, 145, 2394-2406.	3.7	15

BORYANA STAMOVA

#	Article	IF	CITATIONS
55	Gene expression in blood of subjects with Duchenne muscular dystrophy. Neurogenetics, 2009, 10, 117-125.	0.7	11
56	Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study. Annals of Clinical and Translational Neurology, 2020, 7, 1648-1660.	1.7	11
57	Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome: a pilot study. BMC Medical Genomics, 2012, 5, 49.	0.7	10
58	MicroRNA and mRNA Expression Changes in Steroid NaÃ⁻ve and Steroid Treated DMD Patients. Journal of Neuromuscular Diseases, 2015, 2, 387-396.	1.1	10
59	Cancer-Related Ischemic Stroke Has a Distinct Blood mRNA Expression Profile. Stroke, 2019, 50, 3259-3264.	1.0	10
60	RNA Expression Profiles From Blood for the Diagnosis of Stroke and Its Causes. Journal of Child Neurology, 2011, 26, 1131-1136.	0.7	9
61	Aging Immune System in Acute Ischemic Stroke. Stroke, 2021, 52, 1355-1361.	1.0	9
62	Smoking affects gene expression in blood of patients with ischemic stroke. Annals of Clinical and Translational Neurology, 2019, 6, 1748-1756.	1.7	6
63	Genome wide differences of gene expression associated with HLA-DRB1 genotype in multiple sclerosis: A pilot study. Journal of Neuroimmunology, 2013, 257, 90-96.	1.1	5
64	mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocritical Care, 2020, 33, 82-89.	1.2	5
65	Abstract W P93: MiR-122 Improves Stroke Outcomes after Middle Cerebral Artery Occlusion in Rats. Stroke, 2015, 46, .	1.0	1
66	Abstract 69: Trans-eQTL Analysis of Blood After Ischemic Stroke Reveals X-Linked SNP-Gene Relationships. Stroke, 2020, 51, .	1.0	1
67	Progression of cerebral white matter hyperintensities is related to leucocyte gene expression. Brain, 2022, 145, 3179-3186.	3.7	1
68	Gene Expression Changes Implicate Specific Peripheral Immune Responses to Deep and Lobar Intracerebral Hemorrhages in Humans. Brain Hemorrhages, 2022, , .	0.4	1
69	Genomic Tools. , 2017, , 343-345.		Ο
70	Abstract 2357: Src Kinase Inhibition Blocks Thrombin-induced Brain Injuries without Cognitive Side Effects. Stroke, 2012, 43, .	1.0	0
71	Blood Genomics After Brain Ischemia, Hemorrhage, and Trauma. , 2014, , 445-457.		Ο
72	Genome-Wide Expression Studies of Blood and Lymphoblastoid Cell Lines in Autism Spectrum Disorders. , 2014, , 147-173.		0

#	Article	IF	CITATIONS
73	Abstract TP81: MiR122 Modulates Nos2 to Improve Stroke Outcomes After Middle Cerebral Artery Occlusion in Rats. Stroke, 2017, 48, .	1.0	Ο
74	Abstract T P234: Cell Cycle Inhibition via Blocking Src Family Kinases Promotes Hippocampal Neuron Survival and Improves Cognitive Function after Intraventricular Hemorrhage. Stroke, 2014, 45, .	1.0	0