Eli Galanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000711/publications.pdf

Version: 2024-02-01

279798 254184 1,921 44 23 43 citations h-index g-index papers 61 61 61 1467 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatial Patterns of the Tropical Meridional Circulation: Drivers and Teleconnections. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
2	Jupiter's inhomogeneous envelope. Astronomy and Astrophysics, 2022, 662, A18.	5.1	31
3	Constraints on the Latitudinal Profile of Jupiter's Deep Jets. Geophysical Research Letters, 2021, 48, e2021GL092912.	4.0	13
4	Combined magnetic and gravity measurements probe the deep zonal flows of the gas giants. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2352-2362.	4.4	34
5	Evidence for Multiple Ferrel‣ike Cells on Jupiter. Geophysical Research Letters, 2021, 48, e2021GL095651.	4.0	18
6	Jupiter's Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006858.	3.6	17
7	The depth of Jupiter's Great Red Spot constrained by Juno gravity overflights. Science, 2021, 374, 964-968.	12.6	18
8	Microwave observations reveal the deep extent and structure of Jupiter's atmospheric vortices. Science, 2021, 374, 968-972.	12.6	23
9	Theory of Figures to the Seventh Order and the Interiors of Jupiter and Saturn. Planetary Science Journal, 2021, 2, 241.	3.6	26
10	A mascon approach to estimating the depth of Jupiter's Great Red Spot with Juno gravity measurements. Planetary and Space Science, 2020, 181, 104781.	1.7	5
11	Resolving the Latitudinal Shortâ€Scale Gravity Field of Jupiter Using Slepian Functions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006416.	3.6	3
12	The Tropical Atmospheric Conveyor Belt: A Coupled Eulerianâ€Lagrangian Analysis of the Largeâ€Scale Tropical Circulation. Geophysical Research Letters, 2020, 47, e2019GL086437.	4.0	6
13	The Range of Jupiter's Flow Structures That Fit the Juno Asymmetric Gravity Measurements. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006292.	3.6	14
14	Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements. Space Science Reviews, 2020, 216, 1.	8.1	45
15	Analysis of Jupiter's Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements. Astrophysical Journal Letters, 2019, 879, L22.	8.3	14
16	Determining the Depth of Jupiter's Great Red Spot with Juno: A Slepian Approach. Astrophysical Journal Letters, 2019, 874, L24.	8.3	13
17	Measurement and implications of Saturn's gravity field and ring mass. Science, 2019, 364, .	12.6	148
18	Saturn's Deep Atmospheric Flows Revealed by the Cassini Grand Finale Gravity Measurements. Geophysical Research Letters, 2019, 46, 616-624.	4.0	65

#	Article	IF	CITATIONS
19	A suppression of differential rotation in Jupiter's deep interior. Nature, 2018, 555, 227-230.	27.8	165
20	Measurement of Jupiter's asymmetric gravity field. Nature, 2018, 555, 220-222.	27.8	177
21	Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature, 2018, 555, 223-226.	27.8	189
22	A full, self-consistent treatment of thermal wind balance on oblate fluid planets. Journal of Fluid Mechanics, 2017, 810, 175-195.	3.4	32
23	Estimating Jupiter's Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization. Astronomical Journal, 2017, 154, 2.	4.7	10
24	Comparing Jupiter interior structure models to <i>Juno</i> gravity measurements and the role of a dilute core. Geophysical Research Letters, 2017, 44, 4649-4659.	4.0	265
25	The effect of differential rotation on Jupiter's lowâ€degree even gravity moments. Geophysical Research Letters, 2017, 44, 5960-5968.	4.0	25
26	Decoupling Jupiter's deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model. Icarus, 2017, 286, 46-55.	2.5	13
27	Constraining Jupiter's internal flows using Juno magnetic and gravity measurements. Geophysical Research Letters, 2017, 44, 8173-8181.	4.0	7
28	Prediction for the Flow-induced Gravity Field of Saturn: Implications for <i>Cassini</i> 's Grand Finale. Astrophysical Journal Letters, 2017, 843, L25.	8.3	9
29	AN ADJOINT-BASED METHOD FOR THE INVERSION OF THE JUNO AND CASSINI GRAVITY MEASUREMENTS INTO WIND FIELDS. Astrophysical Journal, 2016, 820, 91.	4.5	25
30	The gravitational signature of internal flows in giant planets: Comparing the thermal wind approach with barotropic potential-surface methods. Icarus, 2016, 276, 170-181.	2.5	28
31	Probing the depth of Jupiter's Great Red Spot with the Juno gravity experiment. Icarus, 2016, 267, 232-242.	2.5	20
32	Anomalously strong vertical magnetic fields from distant ELF/VLF sources. Journal of Geophysical Research: Space Physics, 2015, 120, 6036-6044.	2.4	11
33	Inner Structure of Atmospheric Inversion Layers over Haifa Bay in the Eastern Mediterranean. Boundary-Layer Meteorology, 2015, 156, 471-487.	2.3	8
34	Saturn's fast spin determined from its gravitational field and oblateness. Nature, 2015, 520, 202-204.	27.8	53
35	On the spatial and temporal distribution of global thunderstorm cells. Environmental Research Letters, 2014, 9, 124023.	5.2	39
36	The Anomalous Merging of the African and North Atlantic Jet Streams during the Northern Hemisphere Winter of 2010. Journal of Climate, 2014, 27, 7319-7334.	3.2	21

#	Article	IF	CITATION
37	Nowcasting thunderstorms in the Mediterranean region using lightning data. Atmospheric Research, 2011, 100, 489-502.	4.1	61
38	The FLASH Project: using lightning data to better understand and predict flash floods. Environmental Science and Policy, 2011, 14, 898-911.	4.9	31
39	Using Lightning Data to Better Understand and Predict Flash Floods in the Mediterranean. Surveys in Geophysics, 2011, 32, 733-751.	4.6	36
40	A Study of ENSO Prediction Using a Hybrid Coupled Model and the Adjoint Method for Data Assimilation. Monthly Weather Review, 2003, 131, 2748-2764.	1.4	23
41	A Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves. Journal of Physical Oceanography, 2003, 33, 1877-1888.	1.7	40
42	An Evaluation of Air–Sea Flux Products for ENSO Simulation and Prediction. Monthly Weather Review, 2002, 130, 723-732.	1.4	29
43	The Equatorial Thermocline Outcropping—A Seasonal Control on the Tropical Pacific Ocean–Atmosphere Instability Strength. Journal of Climate, 2002, 15, 2721-2739.	3.2	44
44	ENSO's Phase Locking to the Seasonal Cycle in the Fast-SST, Fast-Wave, and Mixed-Mode Regimes. Journals of the Atmospheric Sciences, 2000, 57, 2936-2950.	1.7	58