Xavier Carrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000476/publications.pdf Version: 2024-02-01

XAVIED CADDIED

#	Article	IF	CITATIONS
1	Surface orientation dependent interaction of cobalt (II) precursors with alpha-alumina. Journal of Catalysis, 2021, 394, 157-166.	6.2	2
2	Surface-dependent activity of model CoMoS hydrotreating catalysts. Journal of Catalysis, 2021, 403, 16-31.	6.2	14
3	Interfacial coordination chemistry for catalyst preparation. Journal of Catalysis, 2021, 396, 104-121.	6.2	9
4	Surfaceâ€Dependent Activation of Model αâ€Al 2 O 3 â€Supported Pâ€Doped Hydrotreating Catalysts Prepared Spin Coating. Chemistry - A European Journal, 2020, 26, 14623-14638.	by 3.3	5
5	Direct Observation of the Surface Topography at High Temperature with SEM. Microscopy and Microanalysis, 2020, 26, 397-402.	0.4	8
6	Chemical nature and thermal decomposition behavior of tartaric acid multilayers on rutile TiO2(110). Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 051803.	1.2	0
7	Synthesis of metal oxide catalysts. , 2018, , 43-103.		8
8	<i>In Situ</i> Observation of Atomic Redistribution in Alloying Gold–Silver Nanorods. ACS Nano, 2018, 12, 8467-8476.	14.6	32
9	Inhibition by Inorganic Dopants of γâ€Alumina Chemical Weathering under Hydrothermal Conditions: Identification of Reactive Sites and their Influence in Fischer–Tropsch Synthesis. ChemCatChem, 2017, 9, 2106-2117.	3.7	12
10	Chemical Weathering of Alumina in Aqueous Suspension at Ambient Pressure: A Mechanistic Study. ChemCatChem, 2017, 9, 2186-2194.	3.7	15
11	Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts. Journal of Catalysis, 2016, 344, 591-605.	6.2	33
12	Surface Science Approaches for the Preparation of Aluminaâ€Supported Hydrotreating Catalysts. ChemCatChem, 2015, 7, 3422-3440.	3.7	27
13	Aqueous-Phase Preparation of Model HDS Catalysts on Planar Alumina Substrates: Support Effect on Mo Adsorption and Sulfidation. Journal of the American Chemical Society, 2015, 137, 15915-15928.	13.7	52
14	Heterogeneous catalyst preparation in ionic liquids: Titania supported gold nanoparticles. Catalysis Today, 2014, 235, 58-71.	4.4	16
15	Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation. Applied Surface Science, 2014, 292, 165-173.	6.1	9
16	Oxidation and Surface Segregation Behavior of a Pt–Pd–Rh Alloy Catalyst. Journal of Physical Chemistry C, 2014, 118, 26130-26138.	3.1	26
17	Mechanism of RuO ₂ Crystallization in Borosilicate Glass: An Original <i>in Situ</i> ESEM Approach. Inorganic Chemistry, 2012, 51, 3478-3489.	4.0	31
18	Surface Science Approach to the Solid–Liquid Interface: Surfaceâ€Dependent Precipitation of Ni(OH) ₂ on αâ€Al ₂ O ₃ Surfaces. Angewandte Chemie - International Edition, 2012, 51, 7697-7701.	13.8	22

XAVIER CARRIER

#	Article	IF	CITATIONS
19	Structure of clean and hydrated α-Al2O3 (11̄02) surfaces: implication on surface charge. Physical Chemistry Chemical Physics, 2011, 13, 6531.	2.8	29
20	Formation of heteropolymolybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15: Influence on the dispersion of the active phase and on the HDS activity. Microporous and Mesoporous Materials, 2010, 130, 130-141.	4.4	31
21	Exhaust gas recirculation for on-board hydrogen production by isooctane reforming: Comparison of performances of metal/ceria–zirconia based catalysts prepared through pseudo sol–gel or impregnation methods. Catalysis Today, 2010, 154, 133-141.	4.4	19
22	NO _{<i>x</i>} -TPD as a Tool to Estimate the Accessible Zirconia Surface of ZrO ₂ -Containing Materials. Journal of Physical Chemistry C, 2010, 114, 9731-9738.	3.1	24
23	Insight into the structure and localization of the titania overlayer in TiO2-coated SBA-15 materials. New Journal of Chemistry, 2010, 34, 508.	2.8	31
24	Molybdenum oxide catalysts for metathesis of higher 1-alkenes via supporting MoO2(acetylacetonate)2 and MoO2(glycolate)2 on SBA-15 mesoporous molecular sieves. Applied Catalysis A: General, 2009, 359, 129-135.	4.3	42
25	EXAFS spectroscopy as a tool to probe metal–support interaction and surface molecular structures in oxide-supported catalysts: application to Al2O3-supported Ni(ii) complexes and ZrO2-supported tungstates. Physical Chemistry Chemical Physics, 2009, 11, 7527.	2.8	26
26	Confinement in Nanopores at the Oxide/Water Interface: Modification of Alumina Adsorption Properties. Chemistry - A European Journal, 2008, 14, 6142-6148.	3.3	12
27	Characterization of mesoporous alumina prepared by surface alumination of SBA-15. Microporous and Mesoporous Materials, 2008, 110, 232-241.	4.4	65
28	Transformations of γ-alumina in aqueous suspensions. Journal of Colloid and Interface Science, 2007, 308, 429-437.	9.4	129
29	Mesoporous alumina of controlled pore size obtained by surface alumination of pure silica SBA-15. Studies in Surface Science and Catalysis, 2006, 162, 13-20.	1.5	3
30	Zirconium-Substituted Isopolytungstates:Â Structural Models for Zirconia-Supported Tungsten Catalysts. Inorganic Chemistry, 2006, 45, 1915-1923.	4.0	61
31	A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies. Journal of Colloid and Interface Science, 2006, 304, 283-291.	9.4	15
32	Physical techniques and catalyst preparation: Determining the interactions of transition-metal complexes with oxide surfaces. Pure and Applied Chemistry, 2006, 78, 1039-1055.	1.9	22
33	The State of the Iron Promoter in Tungstated Zirconia Catalysts. ChemPhysChem, 2004, 5, 1191-1199.	2.1	23
34	Synthesis and Characterization of Zr(IV) Polyoxotungstates as Molecular Analogues of Zirconia-Supported Tungsten Catalysts ChemInform, 2004, 35, no.	0.0	0
35	Synthesis and Characterization of Zr(IV) Polyoxotungstates as Molecular Analogues of Zirconia-Supported Tungsten Catalysts. Journal of Physical Chemistry B, 2004, 108, 12465-12471.	2.6	50
36	Influence of ageing on MoO3 formation in the preparation of alumina-supported Mo catalysts. Journal of Molecular Structure, 2003, 656, 231-238.	3.6	46

#	Article	IF	CITATIONS
37	Comment on "Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization―[Appl. Catal. A 240 (2003) 29–40]. Applied Catalysis A: General, 2003, 253, 317-320.	4.3	10
38	The Support as a Chemical Reagent in the Preparation of WOx/γ-Al2O3 Catalysts:  Formation and Deposition of Aluminotungstic Heteropolyanions. Journal of the American Chemical Society, 1999, 121, 3377-3381.	13.7	49
39	Influence of alumina dissolution on the final state of MoOx/Al2O3 Catalysts. Studies in Surface Science and Catalysis, 1999, , 311-316.	1.5	9
40	Ligand-Promoted Alumina Dissolution in the Preparation of MoOX/Î ³ -Al2O3Catalysts:Â Evidence for the Formation and Deposition of an Anderson-type Alumino Heteropolymolybdate. Journal of the American Chemical Society, 1997, 119, 10137-10146.	13.7	178
41	Role of Phosphorus and Triethylene Glycol Incorporation on the Activity of Model Aluminaâ€Supported CoMoS Hydrotreating Catalysts. ChemCatChem, 0, , .	3.7	0