
Sacha Baginsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000433/publications.pdf Version: 2024-02-01

SACHA BACINSKY

#	Article	IF	CITATIONS
1	The Arabidopsis thaliana Chloroplast Proteome Reveals Pathway Abundance and Novel Protein Functions. Current Biology, 2004, 14, 354-362.	1.8	585
2	Genome-Scale Proteomics Reveals <i>Arabidopsis thaliana</i> Gene Models and Proteome Dynamics. Science, 2008, 320, 938-941.	6.0	490
3	Large-Scale Arabidopsis Phosphoproteome Profiling Reveals Novel Chloroplast Kinase Substrates and Phosphorylation Networks Â. Plant Physiology, 2009, 150, 889-903.	2.3	423
4	Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12955-12960.	3.3	148
5	Proteome Dynamics during Plastid Differentiation in Rice. Plant Physiology, 2007, 143, 912-923.	2.3	119
6	Proteome Analysis of the Rice Etioplast. Molecular and Cellular Proteomics, 2005, 4, 1072-1084.	2.5	108
7	Proteome Analysis of Bell Pepper (Capsicum annuum L.) Chromoplasts. Plant and Cell Physiology, 2006, 47, 1663-1673.	1.5	104
8	Plastid Proteomics in Higher Plants: Current State and Future Goals. Plant Physiology, 2011, 155, 1578-1588.	2.3	98
9	The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). FEBS Journal, 2000, 267, 253-261.	0.2	94
10	PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Molecular Biology, 1999, 39, 1013-1023.	2.0	93
11	Transcription factor phosphorylation by a protein kinase associated with chloroplast RNA polymerase from mustard (Sinapis alba). Plant Molecular Biology, 1997, 34, 181-189.	2.0	88
12	Plant proteomics: Concepts, applications, and novel strategies for data interpretation. Mass Spectrometry Reviews, 2009, 28, 93-120.	2.8	81
13	Novel Tonoplast Transporters Identified Using a Proteomic Approach with Vacuoles Isolated from Cauliflower Buds. Plant Physiology, 2007, 145, 216-229.	2.3	78
14	Plastid Proteome Assembly without Toc159: Photosynthetic Protein Import and Accumulation of <i>N</i> -Acetylated Plastid Precursor Proteins Â. Plant Cell, 2011, 23, 3911-3928.	3.1	77
15	pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes inArabidopsis thaliana. Integrative Biology (United Kingdom), 2011, 3, 225-237.	0.6	74
16	Proteome Analysis of Tobacco Bright Yellow-2 (BY-2) Cell Culture Plastids as a Model for Undifferentiated Heterotrophic Plastids. Journal of Proteome Research, 2004, 3, 1128-1137.	1.8	68
17	The Chloroplast Kinase Network: New Insights from Large-Scale Phosphoproteome Profiling. Molecular Plant, 2009, 2, 1141-1153.	3.9	51
18	Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MSE) in the chloroplast stroma proteome. Journal of Proteomics, 2014, 98, 79-89.	1.2	51

SACHA BAGINSKY

#	Article	IF	CITATIONS
19	Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression. Plant Journal, 2017, 90, 1176-1186.	2.8	50
20	Chloroplastâ€localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. New Phytologist, 2019, 221, 866-880.	3.5	47
21	A workflow to increase the detection rate of proteins from unsequenced organisms in highâ€throughput proteomics experiments. Proteomics, 2007, 7, 4245-4254.	1.3	43
22	Characterization of Chloroplast Protein Import without Tic56, a Component of the 1-Megadalton Translocon at the Inner Envelope Membrane of Chloroplasts. Plant Physiology, 2015, 167, 972-990.	2.3	43
23	Signal integration by chloroplast phosphorylation networks: an update. Frontiers in Plant Science, 2012, 3, 256.	1.7	37
24	High Light-Dependent Phosphorylation of Photosystem II Inner Antenna CP29 in Monocots Is STN7 Independent and Enhances Nonphotochemical Quenching. Plant Physiology, 2015, 167, 457-471.	2.3	36
25	MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. Plant Cell, 2017, 29, 3030-3050.	3.1	34
26	Synergistic Toxicity of Copper and Gold Compounds in Cupriavidus metallidurans. Applied and Environmental Microbiology, 2017, 83, .	1.4	33
27	The Chloroplast Import Receptor Toc90 Partially Restores the Accumulation of Toc159 Client Proteins in the Arabidopsis thaliana ppi2 Mutant. Molecular Plant, 2011, 4, 252-263.	3.9	32
28	Common and Specific Protein Accumulation Patterns in Different Albino/Pale-Green Mutants Reveals Regulon Organization at the Proteome Level Â. Plant Physiology, 2012, 160, 2189-2201.	2.3	28
29	Protein phosphorylation in chloroplasts – a survey of phosphorylation targets. Journal of Experimental Botany, 2016, 67, 3873-3882.	2.4	28
30	Importance of Translocon Subunit Tic56 for rRNA Processing and Chloroplast Ribosome Assembly. Plant Physiology, 2016, 172, 2429-2444.	2.3	27
31	The Peptide Microarray "ChloroPhos1.0―Identifies New Phosphorylation Targets of Plastid Casein Kinase II (pCKII) in Arabidopsis thaliana. PLoS ONE, 2014, 9, e108344.	1.1	25
32	Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts. Nature Communications, 2020, 11, 1662.	5.8	23
33	The zinc repository of Cupriavidus metallidurans. Metallomics, 2014, 6, 2157-2165.	1.0	22
34	Integrated proteome and metabolite analysis of the deâ€etiolation process in plastids from rice (<i>Oryza sativa</i> L.). Proteomics, 2011, 11, 1751-1763.	1.3	21
35	The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery. Journal of Biological Chemistry, 2017, 292, 6952-6964.	1.6	19
36	Identification and characterization of chloroplast casein kinase II from Oryza sativa (rice). Journal of Experimental Botany, 2015, 66, 175-187.	2.4	18

SACHA BAGINSKY

#	Article	IF	CITATIONS
37	Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation. Frontiers in Plant Science, 2015, 6, 559.	1.7	17
38	On the Extent of Tyrosine Phosphorylation in Chloroplasts. Plant Physiology, 2015, 169, 996-1000.	2.3	16
39	Chromoplast differentiation in bell pepper (<i>Capsicum annuum</i>) fruits. Plant Journal, 2021, 105, 1431-1442.	2.8	15
40	Protein import-independent functions of Tic56, a component of the 1-MDa translocase at the inner chloroplast envelope membrane. Plant Signaling and Behavior, 2017, 12, e1284726.	1.2	13
41	Tailored Use of Targeted Proteomics in Plant-Specific Applications. Frontiers in Plant Science, 2018, 9, 1204.	1.7	13
42	Consequences of impaired 1-MDa TIC complex assembly for the abundance and composition of chloroplast high-molecular mass protein complexes. PLoS ONE, 2019, 14, e0213364.	1.1	10
43	The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. Frontiers in Plant Science, 2014, 5, 258.	1.7	9
44	Arabidopsis Proteomics: A Simple and Standardizable Workflow for Quantitative Proteome Characterization. Methods in Molecular Biology, 2014, 1072, 275-288.	0.4	9
45	Identification of four plastidâ€localized protein kinases. FEBS Letters, 2016, 590, 1749-1756.	1.3	8
46	The Secret Life of Chloroplast Precursor Proteins in the Cytosol. Molecular Plant, 2020, 13, 1111-1113.	3.9	6
47	MSE for Label-Free Absolute Protein Quantification in Complex Proteomes. Methods in Molecular Biology, 2018, 1696, 235-247.	0.4	5
48	Working day and night: plastid casein kinase 2 catalyses phosphorylation of proteins with diverse functions in light―and darkâ€adapted plastids. Plant Journal, 2020, 104, 546-558.	2.8	4