List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000362/publications.pdf Version: 2024-02-01

	36203	16127
19,104	51	124
citations	h-index	g-index
133	133	31523
docs citations	times ranked	citing authors
	citations 133	19,104 51 citations h-index 133 133

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
4	Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nature Medicine, 2001, 7, 1144-1150.	15.2	710
5	Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Human Molecular Genetics, 2007, 16, 223-232.	1.4	535
6	Parkin Mediates Nonclassical, Proteasomal-Independent Ubiquitination of Synphilin-1: Implications for Lewy Body Formation. Journal of Neuroscience, 2005, 25, 2002-2009.	1.7	489
7	Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. Journal of Cell Biology, 2010, 189, 671-679.	2.3	483
8	Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human Molecular Genetics, 2008, 17, 431-439.	1.4	379
9	Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10744-10749.	3.3	317
10	Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive <i>In Vivo</i> Imaging of Reactive Oxygen Species. ACS Nano, 2016, 10, 6400-6409.	7.3	288
11	Targeted disruption of the tyrosine phosphatase PTPα leads to constitutive downregulation of the kinases Src and Fyn. Current Biology, 1999, 9, 535-S1.	1.8	227
12	Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Human Molecular Genetics, 2005, 14, 3885-3897.	1.4	201
13	Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Human Molecular Genetics, 2005, 14, 2571-2586.	1.4	200
14	Parkin Protects against LRRK2 G2019S Mutant-Induced Dopaminergic Neurodegeneration in Drosophila. Journal of Neuroscience, 2009, 29, 11257-11262.	1.7	193
15	A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models. Nature Communications, 2014, 5, 3276.	5.8	175
16	Reactive oxygen species trigger Parkin/PINK1 pathway–dependent mitophagy by inducing mitochondrial recruitment of Parkin. Journal of Biological Chemistry, 2017, 292, 16697-16708.	1.6	166
17	AMP Kinase Activation Mitigates Dopaminergic Dysfunction and Mitochondrial Abnormalities in <i>Drosophila</i> Models of Parkinson's Disease. Journal of Neuroscience, 2012, 32, 14311-14317.	1.7	155
18	Deregulation of a STAT3-Interleukin 8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness. Journal of Neuroscience, 2008, 28, 5870-5878.	1.7	149

#	Article	IF	CITATIONS
19	Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Human Molecular Genetics, 2008, 17, 2570-2582.	1.4	143
20	Novel Monoclonal Antibodies Demonstrate Biochemical Variation of Brain Parkin with Age. Journal of Biological Chemistry, 2003, 278, 48120-48128.	1.6	140
21	Parkin-mediated lysine 63-linked polyubiquitination: A link to protein inclusions formation in Parkinson's and other conformational diseases?. Neurobiology of Aging, 2006, 27, 524-529.	1.5	130
22	PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1–Parkin-mediated mitophagy. Cell Research, 2018, 28, 787-802.	5.7	124
23	<i>Drosophila</i> Overexpressing Parkin R275W Mutant Exhibits Dopaminergic Neuron Degeneration and Mitochondrial Abnormalities. Journal of Neuroscience, 2007, 27, 8563-8570.	1.7	118
24	Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science, 2019, 366, 1486-1492.	6.0	118
25	Mutations in <i>LRRK2</i> increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Human Mutation, 2011, 32, 1390-1397.	1.1	111
26	Alterations in the solubility and intracellular localization of parkin by several familial Parkinson's disease-linked point mutations. Journal of Neurochemistry, 2005, 93, 422-431.	2.1	110
27	Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochemistry, 2007, 8, S13.	4.4	99
28	Protein Misfolding and Aggregation in Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2119-2134.	2.5	90
29	Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria. Cell Death and Disease, 2017, 8, e3097-e3097.	2.7	90
30	A Smallâ€Molecule Probe for Selective Profiling and Imaging of Monoamine Oxidaseâ€B Activities in Models of Parkinson's Disease. Angewandte Chemie - International Edition, 2015, 54, 10821-10825.	7.2	89
31	Parkin Enhances the Expression of Cyclin-dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells*. Journal of Biological Chemistry, 2010, 285, 29231-29238.	1.6	88
32	Inclusion Body Formation and Neurodegeneration Are Parkin Independent in a Mouse Model of Â-Synucleinopathy. Journal of Neuroscience, 2006, 26, 3685-3696.	1.7	86
33	Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Developmental Cell, 2014, 30, 463-478.	3.1	83
34	Enhanced Autophagy from Chronic Toxicity of Iron and Mutant A53T α-Synuclein. Journal of Biological Chemistry, 2011, 286, 33380-33389.	1.6	82
35	Ultrafast Detection of Peroxynitrite in Parkinson's Disease Models Using a Near-Infrared Fluorescent Probe. Analytical Chemistry, 2020, 92, 4038-4045.	3.2	81
36	Mitochondrial dysfunction and Parkinson disease: a Parkin–AMPK alliance in neuroprotection. Annals of the New York Academy of Sciences, 2015, 1350, 37-47.	1.8	80

#	Article	IF	CITATIONS
37	Parkin Pathway Activation Mitigates Glioma Cell Proliferation and Predicts Patient Survival. Cancer Research, 2012, 72, 2543-2553.	0.4	78
38	Physical and Functional Interactions between Receptor-like Protein-tyrosine Phosphatase α and p59. Journal of Biological Chemistry, 1998, 273, 8691-8698.	1.6	77
39	Mitochondrial Dynamics and Parkinson's Disease: Focus on Parkin. Antioxidants and Redox Signaling, 2012, 16, 935-949.	2.5	76
40	Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling. Journal of Biological Chemistry, 2015, 290, 13862-13874.	1.6	76
41	Relative Sensitivity of Parkin and Other Cysteine-containing Enzymes to Stress-induced Solubility Alterations. Journal of Biological Chemistry, 2007, 282, 12310-12318.	1.6	75
42	A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials, 2014, 35, 2816-2826.	5.7	72
43	Ubiquitin–proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Review of Proteomics, 2007, 4, 769-781.	1.3	68
44	Genetic Insights into Sporadic Parkinson's Disease Pathogenesis. Current Genomics, 2014, 14, 486-501.	0.7	68
45	K63-linked ubiquitination and neurodegeneration. Neurobiology of Disease, 2011, 43, 9-16.	2.1	65
46	MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. Neurobiology of Disease, 2007, 26, 312-322.	2.1	64
47	Parkin Regulation and Neurodegenerative Disorders. Frontiers in Aging Neuroscience, 2015, 7, 248.	1.7	62
48	The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-9.	0.6	60
49	Molecular Events Underlying Parkinson's Disease – An Interwoven Tapestry. Frontiers in Neurology, 2013, 4, 33.	1.1	57
50	Static Magnetic Field Stimulation Enhances Oligodendrocyte Differentiation and Secretion of Neurotrophic Factors. Scientific Reports, 2017, 7, 6743.	1.6	57
51	Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7, 11792.	5.8	56
52	Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy, 2008, 4, 251-253.	4.3	54
53	DAMPs and neurodegeneration. Ageing Research Reviews, 2015, 24, 17-28.	5.0	53
54	Visualization of Intraâ€neuronal Motor Protein Transport through Upconversion Microscopy. Angewandte Chemie - International Edition, 2019, 58, 9262-9268.	7.2	52

#	Article	IF	CITATIONS
55	PGE1 and PGA1 bind to Nurr1 and activate its transcriptional function. Nature Chemical Biology, 2020, 16, 876-886.	3.9	51
56	Genetic models of Parkinson disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 604-615.	1.8	50
57	Nutraceuticals in Parkinson's Disease. NeuroMolecular Medicine, 2016, 18, 306-321.	1.8	48
58	ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis. Journal of the National Cancer Institute, 2016, 108, .	3.0	48
59	Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease. Neurobiology of Aging, 2017, 55, 33-37.	1.5	44
60	A Flexiâ€PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Advanced Materials, 2020, 32, 2001459.	11.1	44
61	Lewy Body–like Inclusions in Human Midbrain Organoids Carrying Glucocerebrosidase and αâ€ S ynuclein Mutations. Annals of Neurology, 2021, 90, 490-505.	2.8	43
62	Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Human Molecular Genetics, 2014, 23, 3157-3165.	1.4	42
63	Interconversion of the Kinetic Identities of the Tandem Catalytic Domains of Receptor-like Protein-tyrosine Phosphatase PTPα by Two Point Mutations Is Synergistic and Substrate-dependent. Journal of Biological Chemistry, 1998, 273, 28986-28993.	1.6	41
64	Phosphorylation of amyloid precursor protein by mutant LRRK2 promotes AICD activity and neurotoxicity in Parkinson's disease. Science Signaling, 2017, 10, .	1.6	41
65	Parkin Mediates Apparent E2-Independent Monoubiquitination In Vitro and Contains an Intrinsic Activity That Catalyzes Polyubiquitination. PLoS ONE, 2011, 6, e19720.	1.1	40
66	Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application. Acta Pharmaceutica Sinica B, 2022, 12, 2778-2789.	5.7	39
67	Polydopamine Dots-Based Fluorescent Nanoswitch Assay for Reversible Recognition of Glutamic Acid and Al ³⁺ in Human Serum and Living Cell. ACS Applied Materials & Interfaces, 2018, 10, 35760-35769.	4.0	37
68	Antioxidants inhibit neuronal toxicity in Parkinson's diseaseâ€linked LRRK 2. Annals of Clinical and Translational Neurology, 2016, 3, 288-294.	1.7	36
69	The Cast of Molecular Characters in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 80-92.	1.8	35
70	α-Arbutin Protects Against Parkinson's Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo. NeuroMolecular Medicine, 2020, 22, 56-67.	1.8	35
71	Kinetic Analysis of two Closely Related Receptor-Like Protein-Tyrosine-Phosphatases, PTPalpha and PTPepsilon. FEBS Journal, 1997, 245, 693-700.	0.2	34
72	Visualization of Intraâ€neuronal Motor Protein Transport through Upconversion Microscopy. Angewandte Chemie, 2019, 131, 9363-9369.	1.6	34

#	Article	IF	CITATIONS
73	Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics, 2005, 6, 179-184.	0.7	33
74	Puromycin Analogues Capable of Multiplexed Imaging and Profiling of Protein Synthesis and Dynamics in Live Cells and Neurons. Angewandte Chemie - International Edition, 2016, 55, 4933-4937.	7.2	33
75	Mitochondrial Dysfunction and Parkinson's Disease—Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Frontiers in Aging Neuroscience, 2020, 12, 89.	1.7	31
76	The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446.	2.0	27
77	Iron mitigates DMT1-mediated manganese cytotoxicity via the ASK1-JNK signaling axis: Implications of iron supplementation for manganese toxicity. Scientific Reports, 2016, 6, 21113.	1.6	27
78	AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease. Human Molecular Genetics, 2013, 22, 2083-2096.	1.4	25
79	APP upregulation contributes to retinal ganglion cell degeneration via JNK3. Cell Death and Differentiation, 2018, 25, 663-678.	5.0	24
80	S-Nitrosylation of Divalent Metal Transporter 1 Enhances Iron Uptake to Mediate Loss of Dopaminergic Neurons and Motoric Deficit. Journal of Neuroscience, 2018, 38, 8364-8377.	1.7	24
81	Proteasome Inhibition Promotes Parkin-Ubc13 Interaction and Lysine 63-Linked Ubiquitination. PLoS ONE, 2013, 8, e73235.	1.1	23
82	Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson's disease treatment. PLoS ONE, 2018, 13, e0188212.	1.1	23
83	Parkinâ€independent mitophagy— <scp>FKBP</scp> 8 takes the stage. EMBO Reports, 2017, 18, 864-865.	2.0	21
84	Transgenic Mice Overexpressing the Divalent Metal Transporter 1 Exhibit Iron Accumulation and Enhanced Parkin Expression in the Brain. NeuroMolecular Medicine, 2017, 19, 375-386.	1.8	21
85	Cytosolic PTEN-induced Putative Kinase 1 Is Stabilized by the NF-ήB Pathway and Promotes Non-selective Mitophagy. Journal of Biological Chemistry, 2015, 290, 16882-16893.	1.6	20
86	Natural Molecules From Chinese Herbs Protecting Against Parkinson's Disease via Anti-oxidative Stress. Frontiers in Aging Neuroscience, 2018, 10, 246.	1.7	19
87	Physiological and pathological roles of LRRK2 in the nuclear envelope integrity. Human Molecular Genetics, 2019, 28, 3982-3996.	1.4	19
88	Isolation of a Novel Protein Tyrosine Phosphatase Inhibitor, 2-Methyl-Fervenulone, and Its Precursors fromStreptomyces. Journal of Natural Products, 2000, 63, 1641-1646.	1.5	18
89	Catalytic activation of the membrane distal domain of protein tyrosine phosphatase ϵ, but not CD45, by two point mutations. BBA - Proteins and Proteomics, 1999, 1434, 275-283.	2.1	16
90	Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2396-2409.	1.1	16

#	Article	IF	CITATIONS
91	Sequential Application of Discrete Topographical Patterns Enhances Derivation of Functional Mesencephalic Dopaminergic Neurons from Human Induced Pluripotent Stem Cells. Scientific Reports, 2018, 8, 9567.	1.6	16
92	Structureâ€Based Specific Detection and Inhibition of Monoamine Oxidases and Their Applications in Central Nervous System Diseases. ChemBioChem, 2019, 20, 1487-1497.	1.3	16
93	Molecular Mechanisms of Neurodegeneration in Parkinson's Disease: Clues from Mendelian Syndromes. IUBMB Life, 2003, 55, 315-322.	1.5	15
94	p62-Mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1308-1317.	1.9	15
95	AF-6 Protects Against Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2017, 11, 241.	1.8	15
96	Pharmacological or Genetic Activation of Hsp70 Protects against Loss of Parkin Function. Neurodegenerative Diseases, 2016, 16, 304-316.	0.8	14
97	Mitochondria-targeted polydopamine nanoprobes for visualizing endogenous sulfur dioxide derivatives in a rat epilepsy model. Chemical Communications, 2020, 56, 11823-11826.	2.2	14
98	AMP Kinase Activation is Selectively Disrupted in the Ventral Midbrain of Mice Deficient in Parkin or PINK1 Expression. NeuroMolecular Medicine, 2019, 21, 25-32.	1.8	12
99	Time-restricted feeding modulates the DNA methylation landscape, attenuates hallmark neuropathology and cognitive impairment in a mouse model of vascular dementia. Theranostics, 2022, 12, 3007-3023.	4.6	12
100	Intramolecular charge transfer enhancing strategy based MAO-A specific two-photon fluorescent probes for glioma cell/tissue imaging. Chemical Communications, 2021, 57, 11260-11263.	2.2	11
101	Conditional disruption of AMP kinase in dopaminergic neurons promotes Parkinson's disease-associated phenotypes in vivo. Neurobiology of Disease, 2021, 161, 105560.	2.1	11
102	Calmodulin Binds to and Inhibits the Activity of the Membrane Distal Catalytic Domain of Receptor Protein-tyrosine Phosphatase α. Journal of Biological Chemistry, 2000, 275, 30075-30081.	1.6	10
103	Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models. Scientific Reports, 2016, 6, 26385.	1.6	10
104	Improved Bioavailability of Levodopa Using Floatable Spray-Coated Microcapsules for the Management of Parkinson's Disease. NeuroMolecular Medicine, 2018, 20, 262-270.	1.8	10
105	Mitochondriaâ€Targeted Twoâ€Photon Fluorescent Photosensitizers for Cancer Cell Apoptosis via Spatial Selectability. Advanced Healthcare Materials, 2019, 8, e1900212.	3.9	10
106	Nanotheranostic agents for neurodegenerative diseases. Emerging Topics in Life Sciences, 2020, 4, 645-675.	1.1	10
107	Cerebral transcriptome analysis reveals age-dependent progression of neuroinflammation in P301S mutant tau transgenic male mice. Brain, Behavior, and Immunity, 2019, 80, 344-357.	2.0	9
108	Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neuroscience Letters, 2016, 624, 47-52.	1.0	8

#	Article	IF	CITATIONS
109	Activation of Autophagy Ameliorates Age-Related Neurogenesis Decline and Neurodysfunction in Adult Mice. Stem Cell Reviews and Reports, 2022, 18, 626-641.	1.7	8
110	The 350-fold compacted Fugu parkin gene is structurally and functionally similar to human Parkin. Gene, 2005, 346, 97-104.	1.0	6
111	Loss of FEZ1, a gene deleted in Jacobsen syndrome, causes locomotion defects and early mortality by impairing motor neuron development. Human Molecular Genetics, 2021, 30, 5-20.	1.4	6
112	Non-mammalian animal models of Parkinson's disease for drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 165-176.	2.5	5
113	Identification of PP2A and S6 Kinase as Modifiers of Leucine-Rich Repeat Kinase-Induced Neurotoxicity. NeuroMolecular Medicine, 2020, 22, 218-226.	1.8	5
114	Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging, 2021, 13, 14651-14674.	1.4	5
115	Animal Models of Parkinson's Disease 2012. Parkinson's Disease, 2012, 2012, 1-2.	0.6	4
116	Puromycin Analogues Capable of Multiplexed Imaging and Profiling of Protein Synthesis and Dynamics in Live Cells and Neurons. Angewandte Chemie, 2016, 128, 5017-5021.	1.6	4
117	Prostaglandin A2 Interacts with Nurr1 and Ameliorates Behavioral Deficits in Parkinson's Disease Fly Model. NeuroMolecular Medicine, 2022, 24, 469-478.	1.8	4
118	Photodynamic Therapy: A Flexiâ€₽EGDA Upconversion Implant for Wireless Brain Photodynamic Therapy (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070219.	11.1	2
119	Dynamic Role of Ubiquitination in the Management of Misfolded Proteins Associated with Neurodegenerative Diseases. Focus on Structural Biology, 2009, , 77-95.	0.1	2
120	Role of Autophagy in Parkinson's Disease. , 2013, , .		1
121	Complete Genome Sequence of Serratia marcescens FY, Isolated from Drosophila melanogaster. Microbiology Resource Announcements, 2020, 9, .	0.3	1
122	Mitochondrial homeostasis in Parkinson's disease - a triumvirate rule?. Neural Regeneration Research, 2017, 12, 1270.	1.6	1
123	PARK2 Induces Autophagy Removal of Impaired Mitochondria via Ubiquitination. , 2014, , 175-188.		0

124 Energy regulation and Parkinson's disease. , 2020, , 205-220.