
Camille Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999892/publications.pdf Version: 2024-02-01

CAMILLELI

#	Article	IF	CITATIONS
1	Storm track processes and the opposing influences of climate change. Nature Geoscience, 2016, 9, 656-664.	12.9	370
2	THE ROLE OF THE BARENTS SEA IN THE ARCTIC CLIMATE SYSTEM. Reviews of Geophysics, 2013, 51, 415-449.	23.0	362
3	Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 2014, 513, 401-404.	27.8	224
4	Dansgaardâ€Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography, 2013, 28, 491-502.	3.0	170
5	Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	148
6	Can North Atlantic Sea Ice Anomalies Account for Dansgaard–Oeschger Climate Signals?*. Journal of Climate, 2010, 23, 5457-5475.	3.2	121
7	Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. Journal of Geophysical Research: Oceans, 2016, 121, 617-637.	2.6	121
8	Observed Atmospheric Coupling between Barents Sea Ice and the Warm-Arctic Cold-Siberian Anomaly Pattern. Journal of Climate, 2016, 29, 495-511.	3.2	121
9	The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate of the Past, 2011, 7, 1089-1101.	3.4	118
10	Reduced Atlantic Storminess during Last Glacial Maximum: Evidence from a Coupled Climate Model. Journal of Climate, 2008, 21, 3561-3579.	3.2	109
11	Thermally Driven and Eddy-Driven Jet Variability in Reanalysis. Journal of Climate, 2012, 25, 1587-1596.	3.2	97
12	A brief history of climate – the northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews, 2014, 106, 225-246.	3.0	85
13	Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quaternary Science Reviews, 2019, 203, 1-20.	3.0	74
14	Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophysical Research Letters, 2017, 44, 1899-1908.	4.0	64
15	The link between eddyâ€driven jet variability and weather regimes in the North Atlanticâ€European sector. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2960-2972.	2.7	64
16	Daily to Decadal Modulation of Jet Variability. Journal of Climate, 2018, 31, 1297-1314.	3.2	55
17	Mismatch between the depth habitat of planktonic foraminifera and the calibration depth of SST transfer functions may bias reconstructions. Climate of the Past, 2013, 9, 859-870.	3.4	53
18	Importance of Late Fall ENSO Teleconnection in the Euro-Atlantic Sector. Bulletin of the American Meteorological Society, 2018, 99, 1337-1343.	3.3	50

CAMILLE LI

#	Article	IF	CITATIONS
19	Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nature Geoscience, 2013, 6, 622-626.	12.9	45
20	Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. Reviews of Geophysics, 2022, 60, .	23.0	43
21	Investigating Possible Arctic–Midlatitude Teleconnections in a Linear Framework. Journal of Climate, 2016, 29, 7329-7343.	3.2	36
22	Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison. Climate of the Past, 2009, 5, 489-502.	3.4	35
23	Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation. Weather and Climate Dynamics, 2020, 1, 261-275.	3.5	28
24	Midlatitude atmospheric circulation responses under 1.5 and 2.0â€ ⁻ °C warming and implications for regional impacts. Earth System Dynamics, 2018, 9, 359-382.	7.1	27
25	Reassessing Sea Ice Drift and Its Relationship to Longâ€Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 2018, 123, 4338-4359.	2.6	26
26	Response of A rctic O cean stratification to changing river runoff in a column model. Journal of Geophysical Research: Oceans, 2015, 120, 2655-2675.	2.6	25
27	Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model. Journals of the Atmospheric Sciences, 2020, 77, 531-549.	1.7	24
28	North Atlantic Storm-Track Sensitivity to Projected Sea Surface Temperature: Local versus Remote Influences. Journal of Climate, 2016, 29, 6973-6991.	3.2	22
29	Extratropical Cyclogenesis Changes in Connection with Tropospheric ENSO Teleconnections to the North Atlantic: Role of Stationary and Transient Waves. Journals of the Atmospheric Sciences, 2018, 75, 3943-3964.	1.7	20
30	Upper-Tropospheric Jet Axis Detection and Application to the Boreal Winter 2013/14. Monthly Weather Review, 2017, 145, 2363-2374.	1.4	19
31	Effect of sorbed oil on the dielectric properties of sand and clay. Water Resources Research, 2001, 37, 1783-1793.	4.2	17
32	Can we use ice sheet reconstructions to constrain meltwater for deglacial simulations?. Paleoceanography, 2012, 27, .	3.0	14
33	Influence of Tropical Pacific Sea Surface Temperature on the Genesis of Gulf Stream Cyclones. Journals of the Atmospheric Sciences, 2016, 73, 4203-4214.	1.7	12
34	The Mechanisms that Determine the Response of the Northern Hemisphere's Stationary Waves to North American Ice Sheets. Journal of Climate, 2019, 32, 3917-3940.	3.2	12
35	The Change in the ENSO Teleconnection under a Low Global Warming Scenario and the Uncertainty due to Internal Variability. Journal of Climate, 2020, 33, 4871-4889.	3.2	12
36	Suppressed eddy driving during southward excursions of the North Atlantic jet on synoptic to seasonal time scales. Atmospheric Science Letters, 2019, 20, e937.	1.9	11

CAMILLE LI

1

#	Article	IF	CITATIONS
37	Arctic amplification under global warming of 1.5Âand 2 °C in NorESM1-Happi. Earth System Dynamics, 2019, 10, 569-598.	7.1	10
38	Control of Barents Sea Wintertime Cyclone Variability by Largeâ€Scale Atmospheric Flow. Geophysical Research Letters, 2020, 47, e2020GL090322.	4.0	10
39	North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Science Advances, 2021, 7, .	10.3	8
40	Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic. Weather and Climate Dynamics, 2021, 2, 759-776.	3.5	8
41	The relationship between the eddy-driven jet stream and northern European sea level variability. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 73, 1886419.	1.7	5
42	Limited Influence of Localized Tropical Seaâ€Surface Temperatures on Moisture Transport into the Arctic. Geophysical Research Letters, 2021, 48, e2020GL091540.	4.0	4
43	Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations. Climate Dynamics, 2021, 57, 2687-2700.	3.8	3
44	Reconstructing winter climate anomalies in the Euro-Atlantic sector using circulation patterns. Weather and Climate Dynamics, 2021, 2, 777-794.	3.5	2
45	Dynamical drivers of Greenland blocking in climate models. Weather and Climate Dynamics, 2021, 2, 1131-1148.	3.5	2

46 The Arctic Mediterranean. , 2020, , 186-215.