Marko D Mihovilovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999688/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	6.0	1,871
2	Opportunities and challenges for combining chemo- and biocatalysis. Nature Catalysis, 2018, 1, 12-22.	16.1	479
3	Cascade catalysis – strategies and challenges en route to preparative synthetic biology. Chemical Communications, 2015, 51, 5798-5811.	2.2	287
4	Crossâ€Coupling Reactions on Azoles with Two and More Heteroatoms. European Journal of Organic Chemistry, 2006, 2006, 3283-3307.	1.2	263
5	Recent Developments in the Application of Baeyer–Villiger Monooxygenases as Biocatalysts. ChemBioChem, 2010, 11, 2208-2231.	1.3	189
6	Halogen dance reactions—A review. Chemical Society Reviews, 2007, 36, 1046-1057.	18.7	174
7	Facile, solvent and ligand free iron catalyzed direct functionalization of N-protected tetrahydroisoquinolines and isochroman. Chemical Communications, 2010, 46, 8836.	2.2	170
8	Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis: Two Metals, Two Mechanisms. Journal of Organic Chemistry, 2011, 76, 8781-8793.	1.7	136
9	Self‣ufficient Baeyer–Villiger Monooxygenases: Effective Coenzyme Regeneration for Biooxygenation by Fusion Engineering. Angewandte Chemie - International Edition, 2008, 47, 2275-2278.	7.2	122
10	Tandem Catalysis: From Alkynoic Acids and Aryl Iodides to 1,2,3-Triazoles in One Pot. Journal of Organic Chemistry, 2011, 76, 2613-2618.	1.7	108
11	Asymmetric oxidations at sulfur catalyzed by engineered strains that overexpress cyclohexanone monooxygenase. New Journal of Chemistry, 1999, 23, 827-832.	1.4	97
12	A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nature Chemical Biology, 2019, 15, 803-812.	3.9	97
13	Microbial Baeyerâ^'Villiger Oxidation:  Stereopreference and Substrate Acceptance of Cyclohexanone Monooxygenase Mutants Prepared by Directed Evolution. Organic Letters, 2006, 8, 1221-1224.	2.4	96
14	Efficient Biooxidations Catalyzed by a New Generation of Self‣ufficient Baeyer–Villiger Monooxygenases. ChemBioChem, 2009, 10, 2595-2598.	1.3	96
15	Half-Lives of Organolithium Reagents in Common Ethereal Solvents. Journal of Organic Chemistry, 1997, 62, 1514-1515.	1.7	93
16	Baeyer-Villiger oxidations: biotechnological approach. Applied Microbiology and Biotechnology, 2016, 100, 6585-6599.	1.7	93
17	Asymmetric Baeyerâ~'Villiger Oxidations of 4-Mono- and 4,4-Disubstituted Cyclohexanones by Whole Cells of EngineeredEscherichiacoli. Journal of Organic Chemistry, 2001, 66, 733-738.	1.7	89
18	An Enzymatic Toolbox for Cascade Reactions: A Showcase for an Inâ€Vivo Redox Sequence in Asymmetric Synthesis. ChemCatChem, 2013, 5, 3524-3528.	1.8	88

#	Article	IF	CITATIONS
19	Enantioselective Baeyer-Villiger Oxidations. Current Organic Chemistry, 2004, 8, 1057-1069.	0.9	88
20	Family Clustering of Baeyer-Villiger Monooxygenases Based on Protein Sequence and Stereopreference. Angewandte Chemie - International Edition, 2005, 44, 3609-3613.	7.2	83
21	Exploiting the Regioselectivity of Baeyer–Villiger Monooxygenases for the Formation of βâ€Amino Acids and βâ€Amino Alcohols. Angewandte Chemie - International Edition, 2010, 49, 4506-4508.	7.2	77
22	Ruthenium(0)-Catalyzed sp ³ C–H Bond Arylation of Benzylic Amines Using Arylboronates. Organic Letters, 2012, 14, 1930-1933.	2.4	73
23	Metal-Assisted Multicomponent Reactions Involving Carbon Monoxide—Towards Heterocycle Synthesis. Angewandte Chemie - International Edition, 2007, 46, 3612-3615.	7.2	72
24	From waste to value – direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone. Green Chemistry, 2017, 19, 367-371.	4.6	63
25	First enantiodivergent Baeyer–Villiger oxidation by recombinant whole-Cells expressing two monooxygenases from Brevibacterium. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1479-1482.	1.0	58
26	Microbial Baeyer–Villiger oxidation of terpenones by recombinant whole-cell biocatalysts—formation of enantiocomplementary regioisomeric lactones. Organic and Biomolecular Chemistry, 2007, 5, 1715-1719.	1.5	57
27	Baker's Yeast-Mediated Reductions of α-Keto Esters and an α-Keto-β-Lactam. Two Routes to the Paclitaxel Side Chain. Journal of Organic Chemistry, 1999, 64, 6603-6608.	1.7	55
28	Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives. Journal of Medicinal Chemistry, 2014, 57, 5602-5619.	2.9	54
29	Baeyer-Villiger oxidations of representative heterocyclic ketones by whole cells of engineered Escherichia coli expressing cyclohexanone monooxygenase. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 349-353.	1.8	53
30	Functionalization of Saturated and Unsaturated Heterocycles via Transition Metal Catalyzed C-H Activation Reactions. Current Organic Chemistry, 2011, 15, 2694-2730.	0.9	52
31	Stereoselective Desymmetrizations by Recombinant Whole Cells Expressing the Baeyer–Villiger Monooxygenase from <i>Xanthobacter</i> sp. ZL5: A New Biocatalyst Accepting Structurally Demanding Substrates. European Journal of Organic Chemistry, 2008, 2008, 1203-1213.	1.2	51
32	Single Operation Stereoselective Synthesis of <i>Aerangis</i> Lactones: Combining Continuous Flow Hydrogenation and Biocatalysts in a Chemoenzymatic Sequence. ChemCatChem, 2013, 5, 724-727.	1.8	51
33	Designer Microorganisms for Optimized Redox Cascade Reactions – Challenges and Future Perspectives. Advanced Synthesis and Catalysis, 2015, 357, 1587-1618.	2.1	51
34	Halogenated 2â€~-Chlorobithiazoles via Pd-Catalyzed Cross-Coupling Reactions. Journal of Organic Chemistry, 2006, 71, 3754-3761.	1.7	50
35	Mechanistic Investigations and Substrate Scope Evaluation of Ruthenium-Catalyzed Direct sp3 Arylation of Benzylic Positions Directed by 3-Substituted Pyridines. Journal of Organic Chemistry, 2013, 78, 658-672.	1.7	48
36	Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. European Journal of Medicinal Chemistry, 2012, 57, 323-328.	2.6	47

#	Article	IF	CITATIONS
37	Identification of novel positive allosteric modulators and null modulators at the <scp>GABA_A</scp> receptor α+βâ^ interface. British Journal of Pharmacology, 2013, 169, 371-383.	2.7	47
38	Accessing tetrahydrofuran-based natural products by microbial Baeyer–Villiger biooxidation. Chemical Communications, 2006, , 3214-3216.	2.2	46
39	Resolution of fused bicyclic ketones by a recombinant biocatalyst expressing the Baeyer–Villiger monooxygenase gene Rv3049c from Mycobacterium tuberculosis H37Rv. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4813-4817.	1.0	46
40	Novel and Efficient Access to Phenylamino-pyrimidine Type Protein Kinase C Inhibitors Utilizing a Negishi Cross-Coupling Strategyâ€. Journal of Organic Chemistry, 2005, 70, 5215-5220.	1.7	45
41	Direct Arylation of Benzo[<i>b</i>]furan and Other Benzoâ€Fused Heterocycles. European Journal of Organic Chemistry, 2014, 2014, 8119-8125.	1.2	45
42	Regiodivergent Baeyer–Villiger oxidation of fused ketone substrates by recombinant whole-cells expressing two monooxygenases from Brevibacterium. Tetrahedron Letters, 2004, 45, 2751-2754.	0.7	44
43	Selective Ru(0)-Catalyzed Deuteration of Electron-Rich and Electron-Poor Nitrogen-Containing Heterocycles. Journal of Organic Chemistry, 2012, 77, 4432-4437.	1.7	44
44	Optimizing Fermentation Conditions of RecombinantEscherichia coliExpressing Cyclopentanone Monooxygenase. Organic Process Research and Development, 2006, 10, 599-604.	1.3	43
45	Ruthenium(II)-Catalyzed sp ³ C–H Bond Arylation of Benzylic Amines Using Aryl Halides. Organic Letters, 2012, 14, 3792-3795.	2.4	42
46	Regiodivergent Baeyer–Villiger Oxidation of Fused Ketones by Recombinant Whole ell Biocatalysts. ChemSusChem, 2008, 1, 143-148.	3.6	41
47	Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Applied Microbiology and Biotechnology, 2018, 102, 6987-6996.	1.7	41
48	Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the γ-Aminobutyric Acid Type A Receptor (GABA _A R) α6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability. Journal of Medicinal Chemistry, 2018, 61, 2422-2446.	2.9	40
49	Biooxidation of Bridged Cycloketones Using Baeyerâ^'Villiger Monooxygenases of Various Bacterial Origin. Journal of Organic Chemistry, 2007, 72, 9597-9603.	1.7	38
50	Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLoS Pathogens, 2018, 14, e1007203.	2.1	37
51	Microwave-mediated intramolecular Diels–Alder cyclization of biodihydroxylated benzoic acid derivatives. Tetrahedron Letters, 2004, 45, 7087-7090.	0.7	36
52	A facile and green synthetic route to boronic acidesters utilizing mechanochemistry. Green Chemistry, 2007, 9, 139-145.	4.6	36
53	Kinetic resolution of aliphatic acyclic β-hydroxyketones by recombinant whole-cell Baeyer–Villiger monooxygenases—Formation of enantiocomplementary regioisomeric esters. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3739-3743.	1.0	35
54	Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations. Journal of Molecular Catalysis B: Enzymatic, 2011, 73, 9-16.	1.8	35

#	Article	IF	CITATIONS
55	In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer–Villiger monooxygenase. Journal of Biotechnology, 2014, 192, 393-399.	1.9	35
56	Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis. Applied Microbiology and Biotechnology, 2014, 98, 4009-4020.	1.7	35
57	In vitro blood–brain barrier permeability predictions for GABAA receptor modulating piperine analogs. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 118-126.	2.0	35
58	Biooxidation of ketones with a cyclobutanone structural motif by recombinant whole-cells expressing 4-hydroxyacetophenone monooxygenase. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 135-140.	1.8	34
59	Synthesis of Enantiomerically Pure Bicyclo[4.2.0]octanes by Cu-Catalyzed [2+2] Photocycloaddition and Enantiotopos-Differentiating Ring Opening. Angewandte Chemie - International Edition, 2006, 45, 5541-5543.	7.2	34
60	Typeâ€II Flavinâ€Containing Monooxygenases: A New Class of Biocatalysts that Harbors Baeyer–Villiger Monooxygenases with a Relaxed Coenzyme Specificity. ChemCatChem, 2014, 6, 1112-1117.	1.8	34
61	Enzymatic Synthesis of Enantiomerically Pure βâ€Amino Ketones, βâ€Amino Esters, and βâ€Amino Alcohols with Baeyer–Villiger Monooxygenases. Chemistry - A European Journal, 2010, 16, 9525-9535.	1.7	33
62	Biocatalysis in Green and Blue: Cyanobacteria. Trends in Biotechnology, 2021, 39, 875-889.	4.9	32
63	Random Mutagenesisâ€Driven Improvement of Carboxylate Reductase Activity using an Amino Benzamidoximeâ€Mediated Highâ€Throughput Assay. Advanced Synthesis and Catalysis, 2019, 361, 2544-2549.	2.1	31
64	Microbial Baeyer-Villiger Oxidation of Bicyclo[4.3.0]ketones by Two Recombinant E. coli Strains. A Novel Access to Indole Alkaloids. Synlett, 2002, 2002, 0700-0702.	1.0	30
65	Microbial Baeyer-Villiger Oxidation of Prochiral Polysubstituted Cyclohexanones by Recombinant Whole-Cells Expressing Two Bacterial Monooxygenases. European Journal of Organic Chemistry, 2005, 2005, 809-816.	1.2	30
66	Quantitative Comparison of Chiral Catalysts Selectivity and Performance: A Generic Concept Illustrated with Cyclododecanone Monooxygenase as Baeyer–Villiger Biocatalyst. Advanced Synthesis and Catalysis, 2012, 354, 3491-3500.	2.1	30
67	Identification, Characterization, and Application of Three Enoate Reductases from <i>Pseudomonasâ€putida</i> in Inâ€Vitro Enzyme Cascade Reactions. ChemCatChem, 2014, 6, 1021-1027.	1.8	30
68	Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Organic and Biomolecular Chemistry, 2017, 15, 9824-9829.	1.5	30
69	Enantioselective kinetic resolution of 3-phenyl-2-ketones using Baeyer–Villiger monooxygenases. Tetrahedron: Asymmetry, 2007, 18, 892-895.	1.8	29
70	Biocatalyst assessment of recombinant whole-cells expressing the Baeyer-Villiger monooxygenase from Xanthobacter sp. ZL5. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 61-68.	1.8	29
71	Baeyer–Villiger monooxygenases in aroma compound synthesis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6135-6138.	1.0	29
72	Regioselective Syntheses of 2,3â€Substituted Pyridines by Orthogonal Crossâ€Coupling Strategies. European Journal of Organic Chemistry, 2011, 2011, 1972-1979.	1.2	29

#	Article	IF	CITATIONS
73	Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones. Biological Chemistry, 2017, 398, 31-37.	1.2	29
74	Substrateâ€Independent Highâ€Throughput Assay for the Quantification of Aldehydes. Advanced Synthesis and Catalysis, 2019, 361, 2538.	2.1	29
75	Synthesis of Pyridinyl-Pyrimidines via Pd-Catalyzed Cross-Coupling Reactions: A Comparison of Classical Thermal and Microwave Assisted Reaction Conditions. Synlett, 2003, 2003, 1862-1864.	1.0	28
76	Investigations of the Halogen Dance Reaction on N-Substituted 2-Thiazolamines§. Journal of Organic Chemistry, 2005, 70, 567-574.	1.7	28
77	Continuous testing system for Baeyer–Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzyme and Microbial Technology, 2011, 49, 284-288.	1.6	28
78	Leoligin, the Major Lignan from Edelweiss (Leontopodium nivale subsp. alpinum), Promotes Cholesterol Efflux from THP-1 Macrophages. Journal of Natural Products, 2016, 79, 1651-1657.	1.5	28
79	Mutagenesisâ€Independent Stabilization of Class B Flavin Monooxygenases in Operation. Advanced Synthesis and Catalysis, 2017, 359, 2121-2131.	2.1	28
80	Inâ€Vivo Synthesis of Polyhydroxylated Compounds from a "Hidden Reservoir―of Toxic Aldehyde Species. ChemCatChem, 2017, 9, 2919-2923.	1.8	27
81	Biocompatible metal-assisted C–C cross-coupling combined with biocatalytic chiral reductions in a concurrent tandem cascade. Chemical Communications, 2018, 54, 12978-12981.	2.2	26
82	para-Trifluoromethyl-methcathinone is an allosteric modulator of the serotonin transporter. Neuropharmacology, 2019, 161, 107615.	2.0	26
83	Baeyer-Villiger Oxidation of Bridgedendo-Tricyclic Ketones with EngineeredEscherichia coliExpressing Monooxygenases of Bacterial Origin. Synlett, 2005, 2005, 2751-2754.	1.0	25
84	Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnology Letters, 2010, 32, 675-680.	1.1	25
85	Molecular tools for GABAA receptors: High affinity ligands for β1-containing subtypes. Scientific Reports, 2017, 7, 5674.	1.6	25
86	Towards functional selectivity for α6β3γ2 GABA _A receptors: a series of novel pyrazoloquinolinones. British Journal of Pharmacology, 2018, 175, 419-428.	2.7	25
87	Aryl Bromides and Aryl Chlorides for the Direct Arylation of Benzylic Amines Mediated by Ruthenium(II). European Journal of Organic Chemistry, 2013, 2013, 2878-2890.	1.2	24
88	Microbial Baeyer–Villiger oxidation of 4,4-disubstituted cyclohexan- and cyclohexenones by recombinant whole-cells expressing monooxygenases of bacterial origin. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 135-140.	1.8	23
89	Asymmetric bioreduction of activated carbon–carbon double bonds using Shewanella yellow enzyme (SYE-4) as novel enoate reductase. Tetrahedron, 2012, 68, 7619-7623.	1.0	23
90	Kinetic Modeling of an Enzymatic Redox Cascade Inâ€Vivo Reveals Bottlenecks Caused by Cofactors. ChemCatChem, 2017, 9, 3420-3427.	1.8	23

#	Article	IF	CITATIONS
91	Easy Access to Enantiopure (<i>S</i>)―and (<i>R</i>)â€Aryl Alkyl Alcohols by a Combination of Gold(III)â€Catalyzed Alkyne Hydration and Enzymatic Reduction. ChemCatChem, 2018, 10, 920-924.	1.8	23
92	Intramolecular Diels–Alder cyclization of biodihydroxylated benzoic acid derivatives towards novel heterocyclic scaffolds. Monatshefte Für Chemie, 2010, 141, 699-707.	0.9	22
93	Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatshefte Für Chemie, 2016, 147, 479-491.	0.9	22
94	Allosteric GABAA Receptor Modulators—A Review on the Most Recent Heterocyclic Chemotypes and Their Synthetic Accessibility. Molecules, 2020, 25, 999.	1.7	22
95	Synthesis of 5-arylated N-arylthiazole-2-amines as potential skeletal muscle cell differentiation promoters. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2149-2154.	1.0	21
96	Non-hazardous Baeyer–Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. Chemical Communications, 2015, 51, 2874-2877.	2.2	21
97	Polyarylated Thiazoles via a Combined Halogen Dance – Cross oupling Strategy. European Journal of Organic Chemistry, 2009, 2009, 3228-3236.	1.2	20
98	Metal assisted synthesis of mono and diamino substituted pyridines. Tetrahedron, 2011, 67, 4169-4178.	1.0	20
99	Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation. FEBS Journal, 2013, 280, 3094-3108.	2.2	20
100	A guideline for the arylation of positions 4 and 5 of thiazole via Pd-catalyzed cross-coupling reactions. Tetrahedron, 2010, 66, 8051-8059.	1.0	19
101	Synthesis of analogs of the phenylamino-pyrimidine type protein kinase C inhibitor CGP 60474 utilizing a Negishi cross-coupling strategy. Tetrahedron, 2006, 62, 2380-2387.	1.0	18
102	Arylation of Pyridines via Suzuki-Miyaura Cross-Coupling and Pyridine-ÂÐirected C-H Activation Using a Continuous-Flow Approach. Synlett, 2013, 24, 2411-2418.	1.0	18
103	Ligandâ€Assisted Iron Catalysis in the Direct Functionalization of CH Bonds. ChemCatChem, 2014, 6, 2194-2196.	1.8	18
104	Synthesis of tetrahydrofuran-based natural products and their carba analogs via stereoselective enzyme mediated Baeyer–Villiger oxidation. Tetrahedron, 2016, 72, 7212-7221.	1.0	18
105	Synthesis and Enantioselective Baeyer-Villiger Oxidation of Prochiral Perhydro-pyranones with Recombinant E. coli Producing Cyclohexanone Monooxygenase. Synlett, 2003, 2003, 1973-1976.	1.0	17
106	First Halogen Dance Reaction on Oxazoles. Synthesis of 4,5-Disubstituted 2-Phenyloxazoles. Synlett, 2005, 2005, 1433-1434.	1.0	17
107	Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production. Molecular Diversity, 2011, 15, 639-643.	2.1	17
108	Mechanistic and Kinetic Studies of the Direct Alkylation of Benzylic Amines: A Formal C(sp ³)–H Activation Proceeds Actually via a C(sp ²)–H Activation Pathway. ACS Catalysis, 2015, 5, 587-595.	5.5	17

#	Article	IF	CITATIONS
109	Morpholine-based buffers activate aerobic photobiocatalysis <i>via</i> spin correlated ion pair formation. Catalysis Science and Technology, 2019, 9, 1365-1371.	2.1	17
110	Stereoselective hybrid catalysts: new opportunities. Journal of Chemical Technology and Biotechnology, 2007, 82, 1067-1071.	1.6	16
111	Recombinant Wholeâ€Cell Mediated <i>Baeyer–Villiger</i> Oxidation of Perhydropyranâ€Type Ketones. Chemistry and Biodiversity, 2008, 5, 490-498.	1.0	16
112	Construction of a Xylanase A Variant Capable of Polymerization. PLoS ONE, 2011, 6, e25388.	1.1	16
113	First selective direct mono-arylation of piperidines using ruthenium-catalyzed C–H activation. Monatshefte Für Chemie, 2013, 144, 539-552.	0.9	16
114	First chemo-enzymatic synthesis of the (R)-Taniguchi lactone and substrate profiles of CAMO and OTEMO, two new Baeyer–Villiger monooxygenases. Monatshefte Für Chemie, 2017, 148, 157-165.	0.9	16
115	Indium- and Zinc-Mediated Acyloxyallylation of Protected and Unprotected Aldotetroses—Revealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal. Journal of Organic Chemistry, 2018, 83, 2647-2659.	1.7	16
116	Biorefinery via Achmatowicz Rearrangement: Synthesis of Pentaneâ€1,2,5â€ŧriol from Furfuryl Alcohol. ChemSusChem, 2019, 12, 2748-2754.	3.6	16
117	Whole-cell Mediated Baeyer-Villiger Oxidation of Functionalized Bicyclo[3.3.0]ketones by Recombinant E. coli. Synlett, 2002, 2002, 0703-0706.	1.0	15
118	A Systematic Study of Suzuki-Miyaura Cross-Coupling Reactions on Thiazoleboronic Esters in the 4- and 5-Position. Synthesis, 2010, 2010, 837-843.	1.2	15
119	Enantiocomplementary access to carba-analogs of C-nucleoside derivatives by recombinant Baeyer–Villiger monooxygenases. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2718-2720.	1.0	15
120	Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter. Neuropharmacology, 2019, 148, 199-209.	2.0	15
121	GABAA Receptor Ligands Often Interact with Binding Sites in the Transmembrane Domain and in the Extracellular Domain—Can the Promiscuity Code Be Cracked?. International Journal of Molecular Sciences, 2020, 21, 334.	1.8	15
122	A novel hetero-Diels-Alder approach towards perhydro quinolinones bearing an angular methyl group. Tetrahedron, 1998, 54, 875-894.	1.0	14
123	Synthesis of Pyrrolo[2,3-d][1,2,3]thiadiazole-6-carboxylates via the Hurd-Mori Reaction. Investigating the Effect of the N-Protecting Group on the Cyclization. Molecules, 2005, 10, 367-375.	1.7	14
124	Palladium(II) atalyzed Regioselective <i>Ortho</i> Arylation of sp ² CH Bonds of <i>N</i> â€Arylâ€2â€amino Pyridine Derivatives. ChemCatChem, 2012, 4, 1345-1352.	1.8	14
125	The steroid monooxygenase from Rhodococcus rhodochrous; a versatile biocatalyst. Tetrahedron: Asymmetry, 2013, 24, 1620-1624.	1.8	14
126	Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation. Planta Medica, 2015, 81, 1065-1074.	0.7	14

#	Article	IF	CITATIONS
127	Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions. Catalysis Science and Technology, 2019, 9, 2682-2688.	2.1	14
128	BakerÂ's yeast-catalyzed synthesis of optically pure 4-tert-butyl-3-hydroxy beta-lactam cis-(3R,4S) and trans-(3R,4R) diastereomers. Canadian Journal of Chemistry, 2002, 80, 796-800.	0.6	13
129	Selective Sequential Cross-Coupling Reactions on Imidazole towards Neurodazine and Analogues. Synthesis, 2013, 45, 1387-1405.	1.2	13
130	Developing piperine towards TRPV1 and GABA _A receptor ligands – synthesis of piperine analogs via Heck-coupling of conjugated dienes. Organic and Biomolecular Chemistry, 2015, 13, 990-994.	1.5	13
131	Thiophene ring-fragmentation reactions: Principles and scale-up towards NLO materials. Tetrahedron, 2017, 73, 472-480.	1.0	13
132	Linked magnolol dimer as a selective PPARγ agonist – Structure-based rational design, synthesis, and bioactivity evaluation. Scientific Reports, 2017, 7, 13002.	1.6	13
133	Synthesis of an antiviral drug precursor from chitin using a saprophyte as a whole-cell catalyst. Microbial Cell Factories, 2011, 10, 102.	1.9	12
134	Enantioselective oxidation by a cyclohexanone monooxygenase from the xenobiotic-degrading Polaromonas sp. strain JS666. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 105-110.	1.8	12
135	Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catalysis, 2021, 11, 2831-2836.	5.5	12
136	An improved synthetic approach to thieno[2,3â€ <i>d</i>]â€1,2,3â€thiadiazolecarboxylates <i>via</i> diazotization of aminothiophene derivatives. Journal of Heterocyclic Chemistry, 1999, 36, 761-765.	1.4	11
137	Pd(0)-Catalyzed Cu(I)-Thiophene-2-carboxylate-mediated Cross-Coupling of Heteroaromatic Thioethers and Boronic Acids-First Liebeskind-Srogl Reaction in Water. Journal of Heterocyclic Chemistry, 2013, 50, 1368-1373.	1.4	11
138	Esters of valerenic acid as potential prodrugs. European Journal of Pharmacology, 2014, 735, 123-131.	1.7	11
139	Modern developments in biotransformations. Tetrahedron, 2016, 72, 7205.	1.0	11
140	Nonâ€hazardous biocatalytic oxidation in Nylonâ€9 monomer synthesis on a 40 g scale with efficient downstream processing. Biotechnology and Bioengineering, 2017, 114, 1670-1678.	1.7	11
141	Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chemical Science, 2019, 10, 5815-5820.	3.7	11
142	Methyl glycosides via Fischer glycosylation: translation from batch microwave to continuous flow processing. Monatshefte Für Chemie, 2019, 150, 11-19.	0.9	11
143	GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1072, 379-389.	1.2	9
144	Novel concurrent redox cascades of (R)- and (S)-carvones enables access to carvo-lactones with distinct regio- and enantioselectivity. Tetrahedron, 2018, 74, 7389-7394.	1.0	9

#	Article	IF	CITATIONS
145	Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Frontiers in Pharmacology, 2021, 12, 654061.	1.6	9
146	Targeting aphA : a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae. Journal of Medical Microbiology, 2016, 65, 678-687.	0.7	9
147	A novel synthetic approach towards the AB-ring system of 9-azasteroids. Tetrahedron Letters, 2000, 41, 1717-1719.	0.7	8
148	VUT-MK142 : a new cardiomyogenic small molecule promoting the differentiation of pre-cardiac mesoderm into cardiomyocytes. MedChemComm, 2013, 4, 1189.	3.5	8
149	Metal-assisted synthesis of unsymmetrical magnolol and honokiol analogs and their biological assessment as GABAA receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 400-403.	1.0	8
150	Regio- and stereoselective synthesis of chiral nitrilolactones using Baeyer–Villiger monooxygenases. Tetrahedron, 2016, 72, 7241-7248.	1.0	8
151	Cu(I)-catalyzed one-pot decarboxylation-alkynylation reactions on 1,2,3,4-tetrahydroisoquinolines and one-pot synthesis of triazolyl-1,2,3,4-tetrahydroisoquinolines. Journal of Molecular Catalysis A, 2017, 426, 398-406.	4.8	8
152	Engineered Flumazenil Recognition Site Provides Mechanistic Insight Governing Benzodiazepine Modulation in GABA _A Receptors. ACS Chemical Biology, 2018, 13, 2040-2047.	1.6	8
153	A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan. Journal of Biological Chemistry, 2021, 297, 101210.	1.6	8
154	One-pot synthesis of triazines as potential agents affecting cell differentiation. Monatshefte Für Chemie, 2018, 149, 1257-1284.	0.9	7
155	Intercepted dehomologation of aldoses by N-heterocyclic carbene catalysis – a novel transformation in carbohydrate chemistry. Chemical Communications, 2019, 55, 12144-12147.	2.2	7
156	Ein Syntheseweg zu Thieno[2,3-d][1,2,3]thiadiazolcarbonsÃ u remethylestern über Diazotierungsreaktionen. Monatshefte Für Chemie, 1999, 130, 573.	0.9	7
157	Synthesis of 1,4,2â€benzodithiazine carboxylates <i>via</i> ring expansion reaction of 1,3â€benzodithioles. Journal of Heterocyclic Chemistry, 2000, 37, 955-958.	1.4	6
158	Microbial Baeyer-Villiger Oxidation of Ketones by Cyclohexanone and Cyclopentanone Monooxygenase – A Computational Rational for Biocatalyst Performance. Monatshefte Für Chemie, 2006, 137, 785-794.	0.9	6
159	Studying competitive lithiations at alpha-, ortho-, and benzylic positions in various N-protected aniline derivatives. Tetrahedron, 2011, 67, 2895-2904.	1.0	6
160	Small Molecule Cardiogenol C Upregulates Cardiac Markers and Induces Cardiac Functional Properties in Lineage-Committed Progenitor Cells. Cellular Physiology and Biochemistry, 2014, 33, 205-221.	1.1	6
161	Exploration of C–H and N–H-bond functionalization towards 1-(1,2-diarylindol-3-yl)tetrahydroisoquinolines. Beilstein Journal of Organic Chemistry, 2014, 10, 2186-2199.	1.3	6
162	Synthesis of <i>endo</i> ―and <i>exo</i> â€ <i>N</i> â€Protected 5â€Arylated 2â€Aminothiazoles through Direc Arylation: An Efficient Route to Cell Differentiation Accelerators. European Journal of Organic Chemistry, 2015, 2015, 4765-4771.	t 1.2	6

#	Article	IF	CITATIONS
163	First Total Synthesis of Piperenol B and Configuration Revision of the Enantiomers Piperenol B and Uvarirufol A. European Journal of Organic Chemistry, 2015, 2015, 1464-1471.	1.2	6
164	Biodihydroxylation of substituted quinolines and isoquinolines by recombinant whole-cell mediated biotransformations. Tetrahedron, 2016, 72, 7348-7355.	1.0	6
165	Cloning and characterization of the Type I Baeyer–Villiger monooxygenase from Leptospira biflexa. AMB Express, 2017, 7, 87.	1.4	6
166	Magnolol dimer-derived fragments as PPARÎ ³ -selective probes. Organic and Biomolecular Chemistry, 2018, 16, 7019-7028.	1.5	6
167	Investigation of a New Typeâ€I Baeyer–Villiger Monooxygenase from <i>Amycolatopsis thermoflava</i> Revealed High Thermodynamic but Limited Kinetic Stability. ChemBioChem, 2020, 21, 971-977.	1.3	6
168	Synthesis of Perhydroquinolinones Bearing an Angular Methyl GroupviaLewis Acid Catalyzed Hetero-Diels-Alder Cyclization. Chemistry Letters, 1997, 26, 849-850.	0.7	5
169	Establishing the NHBoc Functionality asortho-Metallating Group for Furan. Synlett, 2006, 2006, 0789-0791.	1.0	5
170	A Comparative Study on Stille Cross-Coupling Reactions of 2-Phenylthiazoles and 2-Phenyloxazoles. Synthesis, 2008, 2008, 3099-3107.	1.2	5
171	Synthesis of novel 4-(2-amino-5-thiazolyl)-pyrimidine-2-amines as potential protein kinase inhibitors. Monatshefte Für Chemie, 2009, 140, 423-430.	0.9	5
172	Synthesis of potential fungicides based on N-(3-furanyl)pyrrolecarboxamides and N-(3-furanyl)pyrazolecarboxamides. Monatshefte Für Chemie, 2009, 140, 1349-1359.	0.9	5
173	Investigation of the regioselectivity of the Hurd–Mori reaction for the formation of bicyclic 1,2,3-thiadiazoles. Tetrahedron, 2010, 66, 5472-5478.	1.0	5
174	SAR-Guided Scoring Function and Mutational Validation Reveal the Binding Mode of CGS-8216 at the α1+/γ2– Benzodiazepine Site. Journal of Chemical Information and Modeling, 2018, 58, 1682-1696.	2.5	5
175	Diastereoselective Synthesis of cis-2,6-Disubstituted Perhydro-4-pyranones Using Elevated Pressure Hydrogenation. Monatshefte Für Chemie, 2005, 136, 1197-1203.	0.9	4
176	Ring Opening and Rearrangement Reactions of Tricyclo[4.2.1.02,5]nonan-9-one. Synthesis, 2007, 2007, 3896-3906.	1.2	4
177	Variations on a scaffold - Novel GABAA receptor modulators. European Journal of Medicinal Chemistry, 2019, 180, 340-349.	2.6	4
178	Straight Forward and Versatile Differentiation of the l-glycero and d-glycero-d-manno Heptose Scaffold. Frontiers in Chemistry, 2020, 8, 625.	1.8	4
179	Design and Synthesis of a Compound Library Exploiting 5-Methoxyleoligin as Potential Cholesterol Efflux Promoter. Molecules, 2020, 25, 662.	1.7	4
180	Synthesis of substituted thieno[2,3-d]isothiazoles as potential plant activators. Arkivoc, 2013, 2013, 245-265.	0.3	4

#	Article	IF	CITATIONS
181	A Synthetic Approach to Methyl Thieno[2,3-d][1,2,3]thiadiazole Carboxylates via Diazotation. Monatshefte FA¼r Chemie, 1999, 130, 573-580.	0.9	3
182	Cell Factory Design and Optimization for the Stereoselective Synthesis of Polyhydroxylated Compounds. ChemBioChem, 2018, 19, 361-368.	1.3	3
183	Proton, carbon and nitrogen NMR spectroscopic characterization of some bi- and trihetaryl compounds. Magnetic Resonance in Chemistry, 2001, 39, 417-419.	1.1	2
184	Synthesis of Carbo- and Heterocyclic Aldehydes Bearing an Adjacent Donor Group ? Ozonolysis versus OsO4/KIO4-Oxidation. Monatshefte FÃ1⁄4r Chemie, 2004, 135, 899.	0.9	2
185	Characterization of a Structural Leoligin Analog as Farnesoid X Receptor Agonist and Modulator of Cholesterol Transport. Planta Medica, 2020, 86, 1097-1107.	0.7	2
186	Immobilized Cell Physiology Imaging and Stabilization of Enzyme Cascade Reaction Using Recombinant Cells Escherichia coli Entrapped in Polyelectrolyte Complex Beads by Jet Break-Up Encapsulator. Catalysts, 2020, 10, 1288.	1.6	2
187	A silver-coated copper wire as inexpensive drug eluting stent model: determination of the relative releasing properties of leoligin and derivatives. Monatshefte Für Chemie, 2020, , 1.	0.9	2
188	A Kinetic Photometric Assay for the Quantification of the Open hain Content of Aldoses. European Journal of Organic Chemistry, 2021, 2021, 2589-2593.	1.2	2
189	Investigation of Leoligin Derivatives as NF- $\hat{\mathbb{P}}\hat{\mathbb{I}}$ ' Inhibitory Agents. Biomedicines, 2022, 10, 62.	1.4	2
190	A Synthetic Approach to Perhydro-3-isoquinolinones Bearing an Angular Methyl Group via Organocuprate Addition. Monatshefte FA¼r Chemie, 1999, 130, 1257-1268.	0.9	1
191	Metal-Catalyzed Cross-Coupling Reactions in the Decoration of Pyridines. Topics in Heterocyclic Chemistry, 2015, , 1-60.	0.2	1
192	Miscellaneous Key Non-C—C Bond Forming Enzyme Reactions. , 2016, , 243-283.		1
193	Library synthesis of cardiomyogenesis inducing compounds using an efficient two-step-one-flow process. Monatshefte FÃ1⁄4r Chemie, 2016, 147, 523-532.	0.9	1
194	Electrochemical properties of halogenated benzylidenehydrazino-pyrazoles in various imidazolium-based ionic liquids. Monatshefte FA1⁄4r Chemie, 2018, 149, 823-831.	0.9	1
195	Stereoselective Synthesis of the Isomers of Notoincisol A: Assigment of the Absolute Configuration of this Natural Product and Biological Evaluation. Journal of Natural Products, 2018, 81, 2419-2428.	1.5	1
196	Structural Features Defining NF-κB Inhibition by Lignan-Inspired Benzofurans and Benzothiophenes. Biomolecules, 2020, 10, 1131.	1.8	1
197	First Enantiodivergent Baeyer—Villiger Oxidation by Recombinant Whole-Cells Expressing Two Monooxygenases from Brevibacterium ChemInform, 2003, 34, no.	0.1	0
198	Regiodivergent Baeyer—Villiger Oxidation of Fused Ketone Substrates by Recombinant Whole-Cells Expressing Two Monooxygenases from Brevibacterium ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
199	Microwave-Mediated Intramolecular Diels?Alder Cyclization of Biodihydroxylated Benzoic Acid Derivatives ChemInform, 2005, 36, no.	0.1	0
200	First Halogen Dance Reaction on Oxazoles. Synthesis of 4,5-Disubstituted 2-Phenyloxazoles ChemInform, 2005, 36, no.	0.1	0
201	Diastereoselective Synthesis of cis-2,6-Disubstituted Perhydro-4-pyranones Using Elevated Pressure Hydrogenation ChemInform, 2005, 36, no.	0.1	0
202	Synthesis of Novel Sterically Demanding Carbo- and Heterocyclic Î ² -Ketoesters. Molecules, 2006, 11, 357-364.	1.7	0
203	Selective and Facile Palladium-Catalyzed Amination of 2-Fluoro-4-iodopyridine in the 4-Position under Microwave Conditions. Synlett, 2010, 2010, 1505-1510.	1.0	0
204	4th Young Investigator Workshop. Monatshefte Für Chemie, 2013, 144, 445-445.	0.9	0
205	Medicinal and bioorganic chemistry: an Austrian perspective of the chemistry–biology interface. Monatshefte Für Chemie, 2016, 147, 477-477.	0.9	0