Hijaz Ahmad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999553/publications.pdf

Version: 2024-02-01

517 papers 10,190 citations

50276 46 h-index 102487 66 g-index

527 all docs 527 docs citations

527 times ranked

2857 citing authors

#	Article	IF	CITATIONS
1	The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. Journal of Mathematical Analysis and Applications, 2008, 345, 476-484.	1.0	232
2	NUMERICAL SOLUTION OF TRAVELING WAVES IN CHEMICAL KINETICS: TIME-FRACTIONAL FISHERS EQUATIONS. Fractals, 2022, 30, .	3.7	196
3	A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear SchrĶdinger equation. European Physical Journal Plus, 2018, 133, 1.	2.6	177
4	Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. Journal of Taibah University for Science, 2020, 14, 346-358.	2.5	172
5	Fractional modeling of blood ethanol concentration system with real data application. Chaos, 2019, 29, 013143.	2.5	162
6	New Solitary Wave Solutions for Variants of $(3+1)$ -Dimensional Wazwaz-Benjamin-Bona-Mahony Equations. Frontiers in Physics, 2020, 8, .	2.1	131
7	Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results in Physics, 2021, 25, 104228.	4.1	117
8	Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos, 2018, 28, 123121.	2,5	99
9	The new exact solitary wave solutions and stability analysis for the (2 + 1) \$(2+1)\$ -dimensional Zakharov–Kuznetsov equation. Advances in Difference Equations, 2019, 2019, .	3.5	95
10	Study on numerical solution of dispersive water wave phenomena by using a reliable modification of variational iteration algorithm. Mathematics and Computers in Simulation, 2020, 177, 13-23.	4.4	92
11	Nonlinear dispersion in parabolic law medium and its optical solitons. Results in Physics, 2021, 26, 104411.	4.1	92
12	Bright, dark and singular optical solitons in a power law media with fourth order dispersion. Optical and Quantum Electronics, 2017, 49, 1.	3.3	91
13	Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Mathematical Methods in the Applied Sciences, 2019, 42, 4054-4060.	2.3	87
14	Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations. Journal of Low Frequency Noise Vibration and Active Control, 2019, 38, 1113-1124.	2.9	86
15	Solution of Multi-Term Time-Fractional PDE Models Arising in Mathematical Biology and Physics by Local Meshless Method. Symmetry, 2020, 12, 1195.	2.2	84
16	A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results in Physics, 2020, 19, 103462.	4.1	83
17	Unsteady thermal transport flow of Casson nanofluids with generalized Mittag–Leffler kernel of Prabhakar's type. Journal of Materials Research and Technology, 2021, 14, 1292-1300.	5 . 8	78
18	Numerical solution of Korteweg–de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta, 2020, 95, 045210.	2.5	76

#	Article	IF	CITATIONS
19	Heat transport investigation of magneto-hydrodynamics (SWCNT-MWCNT) hybrid nanofluid under the thermal radiation regime. Case Studies in Thermal Engineering, 2021, 27, 101244.	5.7	75
20	Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov's method. Results in Physics, 2021, 24, 104179.	4.1	73
21	Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Computers and Mathematics With Applications, 2019, 78, 2052-2062.	2.7	72
22	Optical solitons of the coupled nonlinear Schrödinger's equation with spatiotemporal dispersion. Nonlinear Dynamics, 2016, 85, 1319-1329.	5.2	70
23	New optical solitons of perturbed nonlinear SchrĶdinger–Hirota equation with spatio-temporal dispersion. Results in Physics, 2021, 29, 104656.	4.1	69
24	A review of carbon fiber materials in automotive industry. IOP Conference Series: Materials Science and Engineering, 2020, 971, 032011.	0.6	67
25	Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Studies in Thermal Engineering, 2022, 32, 101893.	5.7	65
26	Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod. Modern Physics Letters B, 2021, 35, .	1.9	64
27	Solutions of the time fractional reaction–diffusion equations with residual power series method. Advances in Mechanical Engineering, 2016, 8, 168781401667086.	1.6	63
28	Construction of exact traveling wave solutions of the Bogoyavlenskii equation by <mml:math altimg="si7.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo stretchy="false"> (</mml:mo> <mml:msup> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> <mml:mrow> <mml:mr< td=""><td>l:mo4x£i€²<</td><td>/mr61:mo></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	l:mo4x£i€²<	/m r61: mo>
29	xmlns:mml="http://www.w3 Results in Physics, 2020, 19, 103409. Analysing time-fractional exotic options via efficient local meshless method. Results in Physics, 2020, 19, 103385.	4.1	61
30	Optical solitons in parabolic law medium: Jacobi elliptic function solution. Nonlinear Dynamics, 2016, 85, 2577-2582.	5.2	60
31	Novel approach to the analysis of fifth-order weakly nonlocal fractional SchrĶdinger equation with Caputo derivative. Results in Physics, 2021, 31, 104958.	4.1	60
32	Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results in Physics, 2021, 21, 103812.	4.1	59
33	New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations. Complexity, 2020, 2020, 1-10.	1.6	57
34	New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5, 6972-6984.	1.6	57
35	Dynamical behaviour of Chiral nonlinear Schr $\tilde{\mathbf{A}}$ dinger equation. Optical and Quantum Electronics, 2022, 54, 1.	3.3	55
36	Construction of Different Types Analytic Solutions for the Zhiber-Shabat Equation. Mathematics, 2020, 8, 908.	2.2	54

#	Article	IF	Citations
37	On three-dimensional variable order time fractional chaotic system with nonsingular kernel. Chaos, Solitons and Fractals, 2020, 133, 109628.	5.1	54
38	New computational results for a prototype of an excitable system. Results in Physics, 2021, 28, 104666.	4.1	53
39	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg"> <mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50="" 66<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2 Td (linel 4.1</td><td>oreak="bad 51</td></mml:mo)></mml:mrow>	2 Td (linel 4.1	oreak="bad 51
40	SchrA¶dinger system. Results in Physics, 2021, 25, 104177. Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Thermal Science, 2020, 24, 95-105.	1.1	51
41	Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122149.	2.6	50
42	The exact solutions of the stochastic Ginzburg–Landau equation. Results in Physics, 2021, 23, 103988.	4.1	50
43	New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Optical and Quantum Electronics, 2021, 53, 1.	3.3	50
44	Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	1,2	49
45	Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models. Complexity, 2020, 2020, 1-14.	1.6	49
46	Numerical Solutions of Coupled Burgers′ Equations. Axioms, 2019, 8, 119.	1.9	48
47	Numerical simulation of simulate an anomalous solute transport model via local meshless method. AEJ - Alexandria Engineering Journal, 2020, 59, 2827-2838.	6.4	48
48	New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis. Symmetry, 2020, 12, 1001.	2.2	48
49	Computational techniques to study the dynamics of generalized unstable nonlinear SchrĶdinger equation. Journal of Ocean Engineering and Science, 2022, , .	4.3	48
50	On optical solitons of the resonant Schrödinger's equation in optical fibers with dual-power law nonlinearity and time-dependent coefficients. Waves in Random and Complex Media, 2015, 25, 334-341.	2.7	46
51	Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger's equation with spatio-temporal dispersion. Modern Physics Letters B, 2017, 31, 1750163.	1.9	45
52	A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Studies in Thermal Engineering, 2021, 26, 101089.	5.7	45
53	Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation. European Physical Journal Plus, 2020, 135, 1.	2.6	44
54	Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations. Results in Physics, 2020, 17, 103127.	4.1	44

#	Article	IF	CITATIONS
55	Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results in Physics, 2021, 20, 103705.	4.1	44
56	Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. Journal of Saudi Chemical Society, 2022, 26, 101438.	5.2	44
57	Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers–Huxley equation. Optical and Quantum Electronics, 2018, 50, 1.	3.3	43
58	Green Synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities. Molecules, 2021, 26, 4659.	3.8	43
59	The coupled nonlinear SchrĶdinger-type equations. Modern Physics Letters B, 2020, 34, 2050078.	1.9	41
60	New optical solitons for Biswas–Arshed equation with higher order dispersions and full nonlinearity. Optik, 2020, 206, 163332.	2.9	41
61	Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics. Optical and Quantum Electronics, 2018, 50, 1.	3.3	40
62	Optical solitons to the nonlinear Shrödinger's equation with spatio-temporal dispersion using complex amplitude ansatz. Journal of Modern Optics, 2017, 64, 2273-2280.	1.3	40
63	Functionally Graded Piezoelectric Medium Exposed to a Movable Heat Flow Based on a Heat Equation with a Memory-Dependent Derivative. Materials, 2020, 13, 3953.	2.9	39
64	Analytic approximate solutions of diffusion equations arising in oil pollution. Journal of Ocean Engineering and Science, 2021, 6, 62-69.	4.3	39
65	Three-Dimensional Water-Based Magneto-Hydrodynamic Rotating Nanofluid Flow over a Linear Extending Sheet and Heat Transport Analysis: A Numerical Approach. Energies, 2021, 14, 5133.	3.1	39
66	HYPERBOLIC TYPE SOLUTIONS FOR THE COUPLE BOITI-LEON-PEMPINELLI SYSTEM. Facta Universitatis Series Mathematics and Informatics, 0, , 523.	0.1	39
67	New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics, 2020, 8, 728.	2.2	38
68	Chirped solitons in negative index materials generated by Kerr nonlinearity. Results in Physics, 2020, 17, 103097.	4.1	38
69	Thermodynamic modeling of viscoelastic thin rotating microbeam based on non-Fourier heat conduction. Applied Mathematical Modelling, 2021, 91, 973-988.	4.2	38
70	Dynamics of optical solitons in higher-order Sasa–Satsuma equation. Results in Physics, 2021, 30, 104825.	4.1	38
71	Numerical simulations for fractional variation of $(1\hat{a}\in +\hat{a}\in 1)$ -dimensional Biswas-Milovic equation. Optik, 2018, 166, 77-85.	2.9	37
72	Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlattices and Microstructures, 2018, 113, 319-327.	3.1	37

#	Article	IF	CITATIONS
73	Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance. Physica Scripta, 2020, 95, 055206.	2.5	37
74	Symmetry Analysis, Explicit Solutions, and Conservation Laws of a Sixth-Order Nonlinear Ramani Equation. Symmetry, 2018, 10, 341.	2.2	36
75	Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG). Journal of Energy Storage, 2021, 40, 102704.	8.1	36
76	New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5, 6726-6738.	1.6	36
77	Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels. Chaos, 2020, 30, 043106.	2.5	35
78	Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena. Open Physics, 2021, 19, 69-76.	1.7	35
79	New solitary wave solutions to the coupled Maccari's system. Results in Physics, 2021, 21, 103801.	4.1	35
80	Traveling wave solutions and conservation laws of some fifth-order nonlinear equations. European Physical Journal Plus, 2017, 132, 1.	2.6	34
81	W-shape bright and several other solutions to the $(3+1)$ -dimensional nonlinear evolution equations. Modern Physics Letters B, 2021, 35, .	1.9	34
82	Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (hÂ⁻,m)-Convex Functions. Symmetry, 2021, 13, 1686.	2.2	34
83	Nonautonomous complex wave solutions to the (2+1)-dimensional variable-coefficients nonlinear Chiral SchrĶdinger equation. Results in Physics, 2020, 19, 103604.	4.1	34
84	On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves in Random and Complex Media, 2016, 26, 259-271.	2.7	33
85	New approach for the Fornberg–Whitham type equations. Journal of Computational and Applied Mathematics, 2017, 312, 13-26.	2.0	33
86	Stochastic treatment of the solutions for the resonant nonlinear SchrĶdinger equation with spatio-temporal dispersions and inter-modal using beta distribution. European Physical Journal Plus, 2020, 135, 1.	2.6	33
87	The Comparative Study for Solving Fractional-Order Fornberg–Whitham Equation via ϕLaplace Transform. Symmetry, 2021, 13, 784.	2.2	33
88	An efficient approach for the numerical solution of fifth-order KdV equations. Open Mathematics, 2020, 18, 738-748.	1.0	33
89	Reproducing Kernel Hilbert Space Method for Solving Bratu's Problem. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 271-287.	0.9	32
90	Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices. Nonlinear Dynamics, 2017, 88, 2817-2829.	5.2	32

#	Article	IF	Citations
91	On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis. Modern Physics Letters B, 2018, 32, 1850353.	1.9	32
92	Theory and application for the time fractional Gardner equation with Mittag-Leffler kernel. Journal of Taibah University for Science, 2019, 13, 813-819.	2.5	32
93	Survey of third- and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. European Physical Journal Plus, 2021, 136, 1.	2.6	32
94	Improved ()-Expansion Method for the Space and Time Fractional Foam Drainage and KdV Equations. Abstract and Applied Analysis, 2013, 2013, 1-7.	0.7	31
95	Traveling wave solutions and conservation laws for nonlinear evolution equation. Journal of Mathematical Physics, 2018, 59, 023506.	1.1	31
96	Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients. European Physical Journal Plus, 2018, 133, 1.	2.6	31
97	Lie symmetry analysis and conservation laws for the time fractional simplified modified Kawahara equation. Open Physics, 2018, 16, 302-310.	1.7	31
98	Analytical and Approximate Solutions for Complex Nonlinear Schrödinger Equation via Generalized Auxiliary Equation and Numerical Schemes. Communications in Theoretical Physics, 2019, 71, 1267.	2.5	31
99	Stability analysis of leishmania epidemic model with harmonic mean type incidence rate. European Physical Journal Plus, 2020, 135, 528.	2.6	31
100	Construction of multi-wave complexiton solutions of the Kadomtsev-Petviashvili equation via two efficient analyzing techniques. Results in Physics, 2021, 21, 103775.	4.1	31
101	Improved (G'/G)-Expansion Method for the Time-Fractional Biological Population Model and Cahn–Hilliard Equation. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	1.2	30
102	Studies of Ag/TiO2 plasmonics structures integrated in side polished optical fiber used as humidity sensor. Results in Physics, 2018, 10, 308-316.	4.1	30
103	Solutions of a disease model with fractional white noise. Chaos, Solitons and Fractals, 2020, 137, 109840.	5.1	30
104	Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations European Physical Journal Plus, 2020, 135, 1.	2.6	30
105	Exact solutions of Hirota–Maccari system forced by multiplicative noise in the Itô sense. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 74-84.	2.9	30
106	Applications of Haar Wavelet-Finite Difference Hybrid Method and Its Convergence for Hyperbolic Nonlinear SchrĶdinger Equation with Energy and Mass Conversion. Energies, 2021, 14, 7831.	3.1	30
107	On numerical solution of Burgers' equation by homotopy analysis method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 356-360.	2.1	29
108	Complexiton and solitary wave solutions of the coupled nonlinear Maccari's system using two integration schemes. Modern Physics Letters B, 2018, 32, 1850014.	1.9	29

#	Article	IF	CITATIONS
109	Analysis of a functionally graded thermopiezoelectric finite rod excited by a moving heat source. Results in Physics, 2020, 19, 103389.	4.1	29
110	Heat transport investigation of engine oil based rotating nanomaterial liquid flow in the existence of partial slip effect. Case Studies in Thermal Engineering, 2021, 28, 101500.	5.7	29
111	Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of motion for simple and damped mass–spring systems. Noise and Vibration Worldwide, 2020, 51, 12-20.	1.0	28
112	Residual power series algorithm for fractional cancer tumor models. AEJ - Alexandria Engineering Journal, 2020, 59, 1405-1412.	6.4	28
113	Abundant analytical solutions of the fractional nonlinear $(2 + 1)$ -dimensional BLMP equation arising in incompressible fluid. International Journal of Modern Physics B, 2020, 34, 2050084.	2.0	28
114	Numerical solution of time-fractional coupled Korteweg–de Vries and Klein–Gordon equations by local meshless method. Pramana - Journal of Physics, 2021, 95, 1.	1.8	28
115	Moore–Gibson–Thompson thermoelasticity model with temperature-dependent properties for thermo-viscoelastic orthotropic solid cylinder of infinite length under a temperature pulse. Physica Scripta, 2021, 96, 105201.	2.5	28
116	Solution of fractional-order Korteweg-de Vries and Burgers' equations utilizing local meshless method. Journal of Ocean Engineering and Science, 2021, , .	4.3	28
117	Travelling wave solutions of generalized Klein–Gordon equations using Jacobi elliptic functions. Nonlinear Dynamics, 2017, 88, 2281-2290.	5 . 2	27
118	Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numerical Heat Transfer; Part A: Applications, 2021, 79, 311-351.	2.1	27
119	Numerical simulation of 3-D fractional-order convection-diffusion PDE by a local meshless method. Thermal Science, 2021, 25, 347-358.	1.1	27
120	New optical solitons of conformable resonant nonlinear Schrödinger's equation. Open Physics, 2020, 18, 761-769.	1.7	27
121	Fractional mathematical modeling of malaria disease with treatment & mp; insecticides. Results in Physics, 2022, 34, 105220.	4.1	27
122	A new iterative algorithm on the time-fractional Fisher equation: Residual power series method. Advances in Mechanical Engineering, 2017, 9, 168781401771600.	1.6	26
123	Reproducing kernel method for Fangzhu's oscillator for water collection from air. Mathematical Methods in the Applied Sciences, 0, , .	2.3	26
124	New Ostrowski-Type Fractional Integral Inequalities via Generalized Exponential-Type Convex Functions and Applications. Symmetry, 2021, 13, 1429.	2.2	26
125	New impressive behavior of the exact solutions to the Benjamin-Bona-Mahony-Burgers equation with dual power-law nonlinearity against its numerical solution. Results in Physics, 2021, 29, 104730.	4.1	26
126	The unified technique for the nonlinear time-fractional model with the beta-derivative. Results in Physics, 2021, 29, 104785.	4.1	26

#	Article	IF	Citations
127	Clout of fractional time order and magnetic coupling coefficients on the soliton and modulation instability gain in the Heisenberg ferromagnetic spin chain. Chaos, Solitons and Fractals, 2021, 151, 111254.	5.1	26
128	Explicit Solution of Telegraph Equation Based on Reproducing Kernel Method. Journal of Function Spaces and Applications, 2012, 2012, 1-23.	0.5	25
129	Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. Journal of Taibah University for Science, 2020, 14, 1554-1562.	2.5	25
130	The fractional comparative study of the non-linear directional couplers in non-linear optics. Results in Physics, 2021, 27, 104459.	4.1	25
131	A new method for approximate solutions of some nonlinear equations: Residual power series method. Advances in Mechanical Engineering, 2016, 8, 168781401664458.	1.6	24
132	Soliton structures to some time-fractional nonlinear differential equations with conformable derivative. Optical and Quantum Electronics, 2018, 50, 1.	3.3	24
133	Q-switched fiber laser based on CdS quantum dots as a saturable absorber. Results in Physics, 2020, 16, 103123.	4.1	24
134	A thermal conductivity model for hybrid heat and mass transfer investigation of single and multi-wall carbon nano-tubes flow induced by a spinning body. Case Studies in Thermal Engineering, 2021, 28, 101449.	5.7	24
135	Study on the applications of two analytical methods for the construction of traveling wave solutions of the modified equal width equation. Open Physics, 2020, 18, 1003-1010.	1.7	24
136	Compact and non compact structures of the phi-four equation. Waves in Random and Complex Media, 2017, 27, 28-37.	2.7	23
137	Dark optical and other soliton solutions for the three different nonlinear Schr $ ilde{A}\P$ dinger equations. Optical and Quantum Electronics, 2017, 49, 1.	3.3	23
138	Exact optical solitons of Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Modern Physics Letters B, 2019, 33, 1950061.	1.9	23
139	New solutions to the fractional perturbed Chen–Lee–Liu equation with a new local fractional derivative. Waves in Random and Complex Media, 0, , 1-36.	2.7	23
140	Heat transportation enrichment and elliptic cylindrical solution of time-dependent flow. Case Studies in Thermal Engineering, 2021, 27, 101248.	5.7	23
141	Nature-based solutions to improve the summer thermal comfort outdoors. Case Studies in Thermal Engineering, 2021, 28, 101399.	5.7	23
142	Impact of Joule heating and multiple slips on a Maxwell nanofluid flow past a slendering surface. Communications in Theoretical Physics, 2022, 74, 015001.	2.5	23
143	Dark–bright optical solitary waves and modulation instability analysis with (2 + 1)-dimensional cubic-quintic nonlinear SchrA¶dinger equation. Waves in Random and Complex Media, 2019, 29, 393-402.	2.7	22
144	Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator. Journal of Applied Mathematics and Computing, 2021, 67, 755-783.	2.5	22

#	Article	IF	CITATIONS
145	Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim Fractional Kadomtsev-Petviashvili (KP) System. Symmetry, 2021, 13, 477.	2.2	22
146	Response of thermoviscoelastic microbeams affected by the heating of laser pulse under thermal and magnetic fields. Physica Scripta, 2020, 95, 125501.	2.5	22
147	Classification of traveling wave solutions for time-fractional fifth-order KdV-like equation. Waves in Random and Complex Media, 2014, 24, 393-403.	2.7	21
148	Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrödinger's equation for Davydov solitons. Journal of Electromagnetic Waves and Applications, 2018, 32, 858-873.	1.6	21
149	Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation. Open Physics, 2018, 16, 364-370.	1.7	21
150	Meshless Technique for the Solution of Time-Fractional Partial Differential Equations Having Real-World Applications. Journal of Function Spaces, 2020, 2020, 1-17.	0.9	21
151	Analysis of fractional COVIDâ€19 epidemic model under Caputo operator. Mathematical Methods in the Applied Sciences, 2023, 46, 7944-7964.	2.3	21
152	Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Modern Physics Letters B, 2021, 35, 2150297.	1.9	21
153	Analysis of novel fractional COVID-19 model with real-life data application. Results in Physics, 2021, 23, 103968.	4.1	21
154	Impact of a closed space rectangular heat source on natural convective flow through triangular cavity. Results in Physics, 2021, 23, 104011.	4.1	21
155	New wave surfaces and bifurcation of nonlinear periodic waves for Gilson-Pickering equation. Results in Physics, 2021, 24, 104192.	4.1	21
156	Modified Moore–Gibson–Thompson photo-thermoelastic model for a rotating semiconductor half-space subjected to a magnetic field. International Journal of Modern Physics C, 2021, 32, .	1.7	21
157	Dynamics of a fractional order Zika virus model with mutant. AEJ - Alexandria Engineering Journal, 2022, 61, 4821-4836.	6.4	21
158	A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation. Open Physics, 2021, 19, 722-734.	1.7	21
159	Time fractional third-order variant Boussinesq system: Symmetry analysis, explicit solutions, conservation laws and numerical approximations. European Physical Journal Plus, 2018, 133, 1.	2.6	20
160	A local meshless method for the numerical solution of spaceâ€dependent inverse heat problems. Mathematical Methods in the Applied Sciences, 2021, 44, 3066-3079.	2.3	20
161	Hermite–Hadamard Type Inequalities via Generalized Harmonic Exponential Convexity and Applications. Journal of Function Spaces, 2021, 2021, 1-12.	0.9	20
162	Manganese-doped cerium oxide nanocomposite as a therapeutic agent for MCF-7 adenocarcinoma cell line. Saudi Journal of Biological Sciences, 2021, 28, 1233-1238.	3.8	20

#	Article	IF	Citations
163	Automated image classification of chest X-rays of COVID-19 using deep transfer learning. Results in Physics, 2021, 28, 104529.	4.1	20
164	Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal and Fractional, 2022, 6, 42.	3.3	20
165	Investigation of pure-cubic optical solitons in nonlinear optics. Optical and Quantum Electronics, 2022, 54, .	3.3	20
166	Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator. Entropy, 2016, 18, 49.	2.2	19
167	On multiple soliton similaritonâ€pair solutions, conservation laws via multiplier and stability analysis for the Whitham–Broer–Kaup equations in weakly dispersive media. Mathematical Methods in the Applied Sciences, 2019, 42, 2455-2464.	2.3	19
168	Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences. European Physical Journal Plus, 2020, 135, 1.	2.6	19
169	Analytical survey of the predator–prey model with fractional derivative order. AIP Advances, 2021, 11, .	1.3	19
170	W-shaped profile and multiple optical soliton structure of the coupled nonlinear Schrödinger equation with the four-wave mixing term and modulation instability spectrum. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 418, 127710.	2.1	19
171	Electrical Circuits RC, LC, and RLC under Generalized Type Non-Local Singular Fractional Operator. Fractal and Fractional, 2021, 5, 9.	3.3	19
172	Generalized thermoviscoelastic model with memory dependent derivatives and multi-phase delay for an excited spherical cavity. Physica Scripta, 2020, 95, 115708.	2.5	19
173	Exact optical solitons of the perturbed nonlinear Schrödinger–Hirota equation with Kerr law nonlinearity in nonlinear fiber optics. Open Physics, 2020, 18, 526-534.	1.7	19
174	Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach. Journal of Taibah University for Science, 2022, 16, 594-607.	2.5	19
175	Chirped solitary waves of the perturbed Chen–Lee–Liu equation and modulation instability in optical monomode fibres. Optical and Quantum Electronics, 2021, 53, 1.	3.3	18
176	Viscoelastic stressed microbeam analysis based on Moore–Gibson–Thompson heat equation and laser excitation resting on Winkler foundation. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 118-139.	2.9	18
177	A novel mathematical model for COVID-19 with remedial strategies. Results in Physics, 2021, 27, 104248.	4.1	18
178	New Estimations of Hermite–Hadamard Type Integral Inequalities for Special Functions. Fractal and Fractional, 2021, 5, 144.	3.3	18
179	Properties of some higher-dimensional nonlinear SchrĶdinger equations. Results in Physics, 2021, 31, 105073.	4.1	18
180	Fractional optical solitons for the conformable space–time nonlinear Schrödinger equation with Kerr law nonlinearity. Optical and Quantum Electronics, 2018, 50, 1.	3.3	17

#	Article	IF	CITATIONS
181	Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems. European Physical Journal Plus, 2019, 134, 1.	2.6	17
182	Existence, uniqueness, and stability of fractional hepatitis B epidemic model. Chaos, 2020, 30, 103104.	2.5	17
183	Synergistic effect of TEMPO-coated TiO2 nanorods for PDT applications in MCF-7 cell line model. Saudi Journal of Biological Sciences, 2020, 27, 3199-3207.	3.8	17
184	Miscellaneous optical solitons in magneto-optic waveguides associated to the influence of the cross-phase modulation in instability spectra. Physica Scripta, 2021, 96, 045216.	2.5	17
185	Optical solitons to the nonlinear Schr $\tilde{\mathbf{A}}$ q dinger equation in metamaterials and modulation instability. European Physical Journal Plus, 2021, 136, 1.	2.6	17
186	Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations. Journal of Ocean Engineering and Science, 2022, 7, 292-303.	4.3	17
187	JENSEN–MERCER INEQUALITY AND RELATED RESULTS IN THE FRACTAL SENSE WITH APPLICATIONS. Fractals, 2022, 30, .	3.7	17
188	Soliton solutions for time fractional ocean engineering models with Beta derivative. Journal of Ocean Engineering and Science, 2022, 7, 444-448.	4.3	17
189	Experimental study of the efficiency of earth-to-air heat exchangers: Effect of the presence of external fans. Case Studies in Thermal Engineering, 2021, 28, 101461.	5.7	17
190	SOLITARY WAVE SOLUTIONS TO THE TZITZÉICA TYPE EQUATIONS OBTAINED BY A NEW EFFICIENT APPROACH Journal of Applied Analysis and Computation, 2019, 9, 568-589.	l. _{0.5}	17
191	Variational Iteration Algorithm-I with an Auxiliary Parameter for Solving Boundary Value Problems. Earthline Journal of Mathematical Sciences, 0, , 229-247.	1.0	17
192	Envelope solitons of the nonlinear discrete vertical dust grain oscillation in dusty plasma crystals. Chaos, Solitons and Fractals, 2022, 155, 111640.	5.1	17
193	New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations. Symmetry, 2020, 12, 1282.	2.2	16
194	56 nm Wide-Band Tunable Q-Switched Erbium Doped Fiber Laser with Tungsten Ditelluride (WTe2) Saturable Absorber. Scientific Reports, 2020, 10, 9860.	3.3	16
195	Fractional heat conduction model with phase lags for a halfâ€space with thermal conductivity and temperature dependent. Mathematical Methods in the Applied Sciences, 0, , .	2.3	16
196	A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet. AIMS Mathematics, 2021, 6, 13392-13406.	1.6	16
197	Modelling of vibrations of rotating nanoscale beams surrounded by a magnetic field and subjected to a harmonic thermal field using a state-space approach. European Physical Journal Plus, 2021, 136, 1.	2.6	16
198	New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method. International Journal of Modern Physics B, 2021, 35, 2150163.	2.0	16

#	Article	IF	Citations
199	Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of $f(G')$ expansion method. Optical and Quantum Electronics, 2021, 53, 1.	3.3	16
200	Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons. Journal of King Saud University - Science, 2021, 33, 101604.	3.5	16
201	Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method. Chaos, Solitons and Fractals, 2021, 151, 111252.	5.1	16
202	Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method. Open Physics, 2020, 18, 1063-1072.	1.7	16
203	Refinements of Ostrowski Type Integral Inequalities Involving Atangana–Baleanu Fractional Integral Operator. Symmetry, 2021, 13, 2059.	2.2	16
204	Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion. Waves in Random and Complex Media, 2013, 23, 77-88.	2.7	15
205	On combined optical solitons of the one-dimensional Schrödinger's equation with time dependent coefficients. Open Physics, 2016, 14, 65-68.	1.7	15
206	Optical solitary waves and conservation laws to the (2 + 1)-dimensional hyperbolic nonlinear SchrĶdinger equation. Modern Physics Letters B, 2018, 32, 1850373.	1.9	15
207	Second-Order Differential Equation: Oscillation Theorems and Applications. Mathematical Problems in Engineering, 2020, 2020, 1-6.	1.1	15
208	On Discrete Fractional Integral Inequalities for a Class of Functions. Complexity, 2020, 2020, 1-13.	1.6	15
209	Mathematical modeling and experimental analysis of the efficacy of photodynamic therapy in conjunction with photo thermal therapy and PEG-coated Au-doped TiO2 nanostructures to target MCF-7 cancerous cells. Saudi Journal of Biological Sciences, 2021, 28, 1226-1232.	3.8	15
210	Approximate Numerical solutions for the nonlinear dispersive shallow water waves as the Fornberg–Whitham model equations. Results in Physics, 2021, 22, 103907.	4.1	15
211	Numerical Analysis of Natural Convection Driven Flow of a Non-Newtonian Power-Law Fluid in a Trapezoidal Enclosure with a U-Shaped Constructal. Energies, 2021, 14, 5355.	3.1	15
212	Exact soliton solutions of conformable fractional coupled Burger's equation using hyperbolic funtion approach. Results in Physics, 2021, 30, 104776.	4.1	15
213	Fractional residual power series method for the analytical and approximate studies of fractional physical phenomena. Open Physics, 2020, 18, 799-805.	1.7	15
214	New quantum integral inequalities for some new classes of generalized $\langle i \rangle \ddot{i} \langle i \rangle$ -convex functions and their scope in physical systems. Open Physics, 2021, 19, 35-50.	1.7	15
215	Modified variational iteration method for straight fins with temperature dependent thermal conductivity. Thermal Science, 2018, 22, 229-236.	1.1	15
216	Comsolic solution of an elliptic cylindrical compressible fluid flow. Scientific Reports, 2021, 11, 20030.	3.3	15

#	Article	IF	Citations
217	Analytical solutions to the fractional Lakshmanan–Porsezian–Daniel model. Optical and Quantum Electronics, 2022, 54, 1.	3.3	15
218	The exact solutions of the stochastic fractional-space Allen–Cahn equation. Open Physics, 2022, 20, 23-29.	1.7	15
219	Study on abundant explicit wave solutions of the thin-film Ferro-electric materials equation. Optical and Quantum Electronics, 2022, 54, 1.	3.3	15
220	Diverse and novel soliton structures of coupled nonlinear Schr \tilde{A} \P dinger type equations through two competent techniques. Modern Physics Letters B, 2022, 36, .	1.9	15
221	A multi-station unreliable machine model with working vacation policy and customers' impatience. Quality Technology and Quantitative Management, 2022, 19, 766-796.	1.9	15
222	Numerical Solution of Seventh-Order Boundary Value Problems by a Novel Method. Abstract and Applied Analysis, 2014, 2014, 1-9.	0.7	14
223	On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Physics, 2016, 14, 685-689.	1.7	14
224	Optical solitons to the (n + 1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes. Modern Physics Letters B, 2019, 33, 1950224.	1.9	14
225	Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results in Physics, 2019, 13, 102186.	4.1	14
226	On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative. Open Physics, 2019, 17, 816-822.	1.7	14
227	Geometric phase for timelike spherical normal magnetic charged particles optical ferromagnetic model. Journal of Taibah University for Science, 2020, 14, 742-749.	2.5	14
228	A Novel Meshfree Strategy for a Viscous Wave Equation With Variable Coefficients. Frontiers in Physics, 2021, 9, .	2.1	14
229	Flow and thermal study of MHD Casson fluid past a moving stretching porous wedge. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6959-6969.	3.6	14
230	Construction of optical solitons of magneto-optic waveguides with anti-cubic law nonlinearity. Optical and Quantum Electronics, 2021, 53, 646.	3.3	14
231	A variety of exact solutions of the (2+1)-dimensional modified Zakharov–Kuznetsov equation. Modern Physics Letters B, 2021, 35, .	1.9	14
232	Viscoelastic initially stressed microbeam heated by an intense pulse laser via photo-thermoelasticity with two-phase lag. International Journal of Modern Physics C, 2022, 33, .	1.7	14
233	Exact analytical wave solutions for space-time variable-order fractional modified equal width equation. Results in Physics, 2022, 33, 105216.	4.1	14
234	Weighted Midpoint Hermite-Hadamard-Fej $ ilde{A}$ ©r Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal and Fractional, 2021, 5, 252.	3.3	14

#	Article	IF	CITATIONS
235	Dynamics of chaotic system based on image encryption through fractal-fractional operator of non-local kernel. AIP Advances, 2022, 12, .	1.3	14
236	Numerical Solutions of the Second-Order One-Dimensional Telegraph Equation Based on Reproducing Kernel Hilbert Space Method. Abstract and Applied Analysis, 2013, 2013, 1-13.	0.7	13
237	On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method. European Physical Journal Plus, 2019, 134, 1.	2.6	13
238	Second-Order Differential Equation with Multiple Delays: Oscillation Theorems and Applications. Complexity, 2020, 2020, 1-6.	1.6	13
239	Quantum Integral Inequalities with Respect to Raina's Function via Coordinated Generalized $Î'$ -Convex Functions with Applications. Journal of Function Spaces, 2021, 2021, 1-16.	0.9	13
240	New formulation for discrete dynamical type inequalities via \$ h \$-discrete fractional operator pertaining to nonsingular kernel. Mathematical Biosciences and Engineering, 2021, 18, 1794-1812.	1.9	13
241	Dengue control measures via cytoplasmic incompatibility and modern programming tools. Results in Physics, 2021, 21, 103819.	4.1	13
242	Numerical comparison of Caputo and Conformable derivatives of time fractional Burgers-Fisher equation. Results in Physics, 2021, 25, 104247.	4.1	13
243	Analytical solutions of nonlinear time fractional evaluation equations via unified method with different derivatives and their comparison. Results in Physics, 2021, 26, 104357.	4.1	13
244	A solution of coupled nonlinear differential equations arising in a rotating micropolar nanofluid flow system by Hermite wavelet technique. Engineering With Computers, 2022, 38, 3351-3372.	6.1	13
245	Analysis and numerical solution of novel fractional model for dengue. Results in Physics, 2021, 28, 104669.	4.1	13
246	Assessment of green and chemically synthesized copper oxide nanoparticles against hepatocellular carcinoma. Journal of King Saud University - Science, 2021, 33, 101669.	3.5	13
247	Exact solutions of stochastic KdV equation with conformable derivatives in white noise environment. Thermal Science, 2021, 25, 143-149.	1.1	13
248	Comparative study of heat and mass transfer of generalized MHD Oldroyd-B bio-nano fluid in a permeable medium with ramped conditions. Scientific Reports, 2021, 11, 23454.	3.3	13
249	Extended tanh-Function Method for Finding Travelling Wave Solutions of Some Nonlinear Partial Differential Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2005, 60, 7-16.	1.5	12
250	A Novel Method for Solving KdV Equation Based on Reproducing Kernel Hilbert Space Method. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.7	12
251	The investigation of soliton solutions and conservation laws to the coupled generalized SchrĶdinger–Boussinesq system. Waves in Random and Complex Media, 2019, 29, 77-92.	2.7	12
252	Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23, 115-122.	1.0	12

#	Article	IF	Citations
253	Modeling and analysis of high shear viscoelastic Ellis thin liquid film phenomena. Physica Scripta, 2021, 96, 055201.	2.5	12
254	Outdoor Thermal Comfort Optimization through Vegetation Parameterization: Species and Tree Layout. Sustainability, 2021, 13, 11791.	3.2	12
255	Mechanism of Solute and Thermal Characteristics in a Casson Hybrid Nanofluid Based with Ethylene Glycol Influenced by Soret and Dufour Effects. Energies, 2021, 14, 6818.	3.1	12
256	Numerical Investigation of Thermal-Flow Characteristics in Heat Exchanger with Various Tube Shapes. Applied Sciences (Switzerland), 2021, 11, 9477.	2.5	12
257	Exact solutions of the cubic Boussinesq and the coupled Higgs system. Thermal Science, 2020, 24, 333-342.	1.1	12
258	Solution of Burgers' equation appears in fluid mechanics by multistage optimal homotopy asymptotic method. Thermal Science, 2022, 26, 815-821.	1.1	12
259	Analytical solutions of the fifth-order time fractional nonlinear evolution equations by the unified method. Modern Physics Letters B, 2022, 36, .	1.9	12
260	Discrete breathers incited by the intra-dimers parameter in microtubulin protofilament array. European Physical Journal Plus, 2022, 137, 1.	2.6	12
261	A theoretical and numerical analysis of a fractal–fractional two-strain model of meningitis. Results in Physics, 2022, 39, 105775.	4.1	12
262	The reproducing kernel Hilbert space method for solving Troesch's problem. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2013, 14, 19-27.	1.0	11
263	A New Application of the Reproducing Kernel Hilbert Space Method to Solve MHD Jeffery-Hamel Flows Problem in Nonparallel Walls. Abstract and Applied Analysis, 2013, 2013, 1-12.	0.7	11
264	Measurements of directCPasymmetries in Bâ \dagger 'Xs \hat{i} 3decays using sum of exclusive decays. Physical Review D, 2014, 90, .	4.7	11
265	Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion. European Physical Journal Plus, 2017, 132, 1.	2.6	11
266	Approximate solutions to the conformable Rosenauâ∈Hyman equation using the twoâ€step Adomian decomposition method with Pad é approximation. Mathematical Methods in the Applied Sciences, 2020, 43, 7632-7639.	2.3	11
267	Improvement of the performance of solar channels by using vortex generators and hydrogen fluid. Journal of Thermal Analysis and Calorimetry, 2022, 147, 545-566.	3.6	11
268	Fractal Ion Acoustic Waves of the Space-Time Fractional Three Dimensional KP Equation. Advances in Mathematical Physics, 2020, 2020, 1-7.	0.8	11
269	New interaction and combined multi-wave solutions for the Heisenberg ferromagnetic spin chain equation. European Physical Journal Plus, 2020, $135,1.$	2.6	11
270	Construction of rogue waves and conservation laws of the complex coupled Kadomtsev–Petviashvili equation. International Journal of Modern Physics B, 2020, 34, 2050115.	2.0	11

#	Article	IF	Citations
271	Lie Symmetry Analysis, Conservation Laws, Power Series Solutions, and Convergence Analysis of Time Fractional Generalized Drinfeld-Sokolov Systems. Symmetry, 2021, 13, 874.	2.2	11
272	FRACTAL HADAMARD–MERCER-TYPE INEQUALITIES WITH APPLICATIONS. Fractals, 2022, 30, .	3.7	11
273	Symmetry reductions and invariant-group solutions for a two-dimensional Kundu–Mukherjee–Naskar model. Results in Physics, 2021, 28, 104583.	4.1	11
274	The Hermite-Hadamard Type Inequality and its Estimations via Generalized Convex Functions of Raina Type. İletişim, Sosyoloji Ve Tarih Araştırmaları Dergisi:, 2021, 1, 32-43.	1.8	11
275	Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nanofluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators. CMES - Computer Modeling in Engineering and Sciences, 2021, 126, 855-889.	1.1	11
276	N-wave and other solutions to the B-type Kadomtsev-Petviashvili equation. Thermal Science, 2019, 23, 2027-2035.	1.1	11
277	Exact solutions for the system of stochastic equations for the ion sound and Langmuir waves. Results in Physics, 2021, 30, 104841.	4.1	11
278	Thermal visualization of Ostwald-de Waele liquid in wavy trapezoidal cavity: Effect of undulation and amplitude. Case Studies in Thermal Engineering, 2022, 29, 101698.	5.7	11
279	Effects of two-equation turbulence models on the convective instability in finned channel heat exchangers. Case Studies in Thermal Engineering, 2022, 31, 101824.	5.7	11
280	Manakov model of coupled NLS equationÂand its optical soliton solutions. Journal of Ocean Engineering and Science, 2022, , .	4.3	11
281	Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative Shehu transform method. Journal of Ocean Engineering and Science, 2021, , .	4.3	11
282	On the fractional-order mathematical model of COVID-19 with the effects of multiple non-pharmaceutical interventions. AIMS Mathematics, 2022, 7, 16017-16036.	1.6	11
283	On soliton solutions of the Wu-Zhang system. Open Physics, 2016, 14, 76-80.	1.7	10
284	Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE. European Physical Journal Plus, 2019, 134, 1.	2.6	10
285	Symmetry reductions, explicit solutions, convergence analysis and conservation laws via multipliers approach to the Chen–Lee–Liu model in nonlinear optics. Modern Physics Letters B, 2019, 33, 1950035.	1.9	10
286	Soliton solutions for system of ion sound and Langmuir waves. Optical and Quantum Electronics, 2020, 52, 1.	3.3	10
287	Controllable rational solutions in nonlinear optics fibers. European Physical Journal Plus, 2020, 135, 1.	2.6	10
288	New algorithm for the approximate solution of generalized seventh order Korteweg-Devries equation arising in shallow water waves. Results in Physics, 2021, 20, 103744.	4.1	10

#	Article	IF	CITATIONS
289	New Explicit Solutions to the Fractional-Order Burgers' Equation. Mathematical Problems in Engineering, 2021, 2021, 1-11.	1.1	10
290	A mathematical model to study resistance and non-resistance strains of influenza. Results in Physics, 2021, 26, 104390.	4.1	10
291	Research of lump dynamics on the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation. Modern Physics Letters B, 2021, 35, .	1.9	10
292	Generalized thermoelastic responses in an infinite solid cylinder under the thermoelastic-diffusion model with four lags. Chinese Journal of Physics, 2022, 76, 121-134.	3.9	10
293	An extension of optimal auxiliary function method to fractional order high dimensional equations. AEJ - Alexandria Engineering Journal, 2021, 60, 4809-4818.	6.4	10
294	On the flow of MHD generalized maxwell fluid via porous rectangular duct. Open Physics, 2020, 18, 989-1002.	1.7	10
295	Numerical solution of second order Painlev \tilde{A} \otimes differential equation. Journal of Mathematics and Computer Science, 0, , 150-157.	1.0	10
296	Variational Iteration Algorithm-I with an Auxiliary Parameter for Solving Fokker-Planck Equation. Earthline Journal of Mathematical Sciences, 0, , 29-37.	1.0	10
297	Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model. Open Physics, 2021, 19, 504-518.	1.7	10
298	New chirp-free and chirped form optical solitons to the non-linear Schr $\tilde{A}\P$ dinger equation. Optical and Quantum Electronics, 2021, 53, 1.	3.3	10
299	New classifications of nonlinear Schr \tilde{A} q dinger model with group velocity dispersion via new extended method. Results in Physics, 2021, 31, 104910.	4.1	10
300	Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2021, 7, 1155-1184.	1.6	10
301	Haar wavelet method for solution of variable order linear fractional integro-differential equations. AIMS Mathematics, 2022, 7, 5431-5443.	1.6	10
302	New diverse variety for the exact solutions to Keller-Segel-Fisher system. Results in Physics, 2022, 35, 105320.	4.1	10
303	Groundwater Potentiality Assessment of Ain Sefra Region in Upper Wadi Namous Basin, Algeria Using Integrated Geospatial Approaches. Sustainability, 2022, 14, 4450.	3.2	10
304	Analysis and Simulation of Fractional Order Smoking Epidemic Model. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-16.	1.3	10
305	A Study for Obtaining more Compacton Solutions of the Modified Form of Fifth-order Korteweg-De Vries-like Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2004, 59, 359-367.	1.5	9
306	New Families of Solitary Pattern Solutions of the Nonlinear Dispersive K(n, m, k) Equations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2004, 59, 275-280.	1.5	9

#	Article	IF	CITATIONS
307	An Efficient Meshless Method for Hyperbolic Telegraph Equations in $(1+1)$ Dimensions. CMES - Computer Modeling in Engineering and Sciences, 2021, 128, 687-698.	1.1	9
308	Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels. Open Physics, 2021, 19, 51-60.	1.7	9
309	New Results on Qualitative Behavior of Second Order Nonlinear Neutral Impulsive Differential Systems with Canonical and Non-Canonical Conditions. Symmetry, 2021, 13, 934.	2.2	9
310	M-shape and W-shape bright incite by the fluctuations of the polarization in a-helix protein. Physica Scripta, 2021, 96, 085501.	2.5	9
311	The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system. Waves in Random and Complex Media, 0, , 1-15.	2.7	9
312	FRACTIONAL ORDER MODEL FOR THE CORONAVIRUS (COVID-19) IN WUHAN, CHINA. Fractals, 2022, 30, .	3.7	9
313	Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities. Results in Physics, 2021, 30, 104839.	4.1	9
314	New method for investigating the density-dependent diffusion Nagumo equation. Thermal Science, 2018, 22, 143-152.	1.1	9
315	(k, Ï`)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities. Fractal and Fractional, 2021, 5, 172.	3.3	9
316	Using Non-Fourier's Heat Flux and Non-Fick's Mass Flux Theory in the Radiative and Chemically Reactive Flow of Powell–Eyring Fluid. Energies, 2021, 14, 6882.	3.1	9
317	A variety of fractional soliton solutions for three important coupled models arising in mathematical physics. International Journal of Modern Physics B, 2022, 36, .	2.0	9
318	Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings. Symmetry, 2021, 13, 2209.	2.2	9
319	Numerical Investigations through ANNs for Solving COVID-19 Model. International Journal of Environmental Research and Public Health, 2021, 18, 12192.	2.6	9
320	Influence of the induced magnetic field on second-grade nanofluid flow with multiple slip boundary conditions. Waves in Random and Complex Media, 0 , , 1 - 16 .	2.7	9
321	Dark-soliton behaviors arising from a coupled nonlinear SchrĶdinger system. Results in Physics, 2022, 36, 105459.	4.1	9
322	Some new types of optical solitons to the time-fractional new hamiltonian amplitude equation via extended Sinh-Gorden equation expansion method. Modern Physics Letters B, 2022, 36, .	1.9	9
323	Compact and noncompact structures of a three-dimensional 3DKP <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo><mml:mo><mml:mi>m</mml:mi><mml:mo><mml:mo>,</mml:mo>,r with nonlinear dispersion. Applied Mathematics Letters, 2013, 26, 437-444.</mml:mo></mml:mo></mml:mo></mml:mrow></mml:math>	n <td>> < 8ml:mo>) <</td>	> < 8ml:mo>) <
324	New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space. Symmetry, 2020, 12, 1017.	2.2	8

#	Article	IF	CITATIONS
325	Reproducing kernel functions and homogenizing transforms. Thermal Science, 2021, 25, 9-18.	1.1	8
326	Improved Heat Transfer in W-Baffled Air-Heat Exchangers with Upper-Inlet and Lower-Exit. Mathematical Modelling of Engineering Problems, 2021, 8, 1-9.	0.5	8
327	The M-fractional improved perturbed nonlinear SchrĶdinger equation: Optical solitons and modulation instability analysis. International Journal of Modern Physics B, 2021, 35, 2150121.	2.0	8
328	Abundant Explicit Solutions to Fractional Order Nonlinear Evolution Equations. Mathematical Problems in Engineering, 2021, 2021, 1-16.	1.1	8
329	Design and simulation of mechanical ventilators. Chaos, Solitons and Fractals, 2021, 150, 111169.	5.1	8
330	Thermoâ€viscoelastic behavior in an infinitely thin orthotropic hollow cylinder with variable properties under the nonâ€Fourier MGT thermoelastic model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, e202000344.	1.6	8
331	Geometrical study and solutions for family of burgers-like equation with fractional order space time. AEJ - Alexandria Engineering Journal, 2022, 61, 511-521.	6.4	8
332	Analytic approximate solutions for fluid flow in the presence of heat and mass transfer. Thermal Science, 2018, 22, 259-264.	1.1	8
333	Variational Iteration Method with an Auxiliary Parameter for Solving Telegraph Equations. Journal of Nonlinear Analysis and Application, 2018, 2018, 223-232.	0.1	8
334	Estimation of the Wind Energy Potential in Various North Algerian Regions. Energies, 2021, 14, 7564.	3.1	8
335	Analytical solution of tank drainage flow for electrically conducting Newtonian fluid. Thermal Science, 2021, 25, 433-439.	1.1	8
336	Diverse optical soliton solutions of the fractional coupled (2 + 1)-dimensional nonlinear Schrödinger equations. Optical and Quantum Electronics, 2022, 54, 1.	3.3	8
337	A new local fractional derivative applied to the analytical solutions for the nonlinear Schr $ ilde{A}\P$ dinger equation with third-order dispersion. Journal of Nonlinear Optical Physics and Materials, 0, , .	1.8	8
338	Brownian motion effects on analytical solutions of a fractional-space long–short-wave interaction with conformable derivative. Results in Physics, 2022, 35, 105371.	4.1	8
339	Transcendental surface wave to the symmetric regularized long-wave equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 439, 128123.	2.1	8
340	Solitons and complexitons to the $(2+1)$ -dimensional Heisenberg ferromagnetic spin chain model. International Journal of Modern Physics B, 2019, 33, 1950368.	2.0	7
341	Some new exact solutions for derivative nonlinear Schr \tilde{A} q dinger equation with the quintic non-Kerr nonlinearity. Modern Physics Letters B, 2020, 34, 2050079.	1.9	7
342	Modeling of pressure–volume controlled artificial respiration with local derivatives. Advances in Difference Equations, 2021, 2021, 49.	3.5	7

#	Article	IF	CITATIONS
343	A detailed study on a solvable system related to the linear fractional difference equation. Mathematical Biosciences and Engineering, 2021, 18, 5392-5408.	1.9	7
344	Thermosolutal natural convection across an inclined square enclosure partially filled with a porous medium. Results in Physics, 2021, 21, 103821.	4.1	7
345	FRACTIONAL MATHEMATICAL MODELING TO THE SPREAD OF POLIO WITH THE ROLE OF VACCINATION UNDER NON-SINGULAR KERNEL. Fractals, 2022, 30, .	3.7	7
346	Vibration analysis of nanobeams subjected to gradient-type heating due to a static magnetic field under the theory of nonlocal elasticity. Scientific Reports, 2022, 12, 1894.	3.3	7
347	Propagation of some new traveling wave patterns of the double dispersive equation. Open Physics, 2022, 20, 130-141.	1.7	7
348	An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. Journal of Ocean Engineering and Science, 2022, , .	4.3	7
349	An efficient hybrid technique for the solution of fractional-order partial differential equations. Carpathian Mathematical Publications, 2021, 13, 790-804.	0.8	7
350	Tunable S+/S band Q-switched thulium-doped fluoride fiber laser using tungsten ditelluride (WTe2). Results in Physics, 2020, 17, 103124.	4.1	6
351	QUALITATIVE PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL AND DIFFERENCE EQUATIONS ARISING IN PHYSICAL MODELS. Fractals, 2021, 29, 2140024.	3.7	6
352	Effect of EGR on Performances and Emissions of DI Diesel Engine Fueled with Waste Plastic Oil: CDF Approach. Annales De Chimie: Science Des Materiaux, 2021, 45, 217-223.	0.4	6
353	A COMPARATIVE STUDY OF SEMI-ANALYTICAL METHODS FOR SOLVING FRACTIONAL-ORDER CAUCHY REACTION–DIFFUSION EQUATION. Fractals, 2021, 29, 2150143.	3.7	6
354	New travelling wave analytic and residual power series solutions of conformable Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Results in Physics, 2021, 29, 104591.	4.1	6
355	Multistage Optimal Homotopy Asymptotic Method for the Nonlinear Riccati Ordinary Differential Equation in Nonlinear Physics. Applied Mathematics and Information Sciences, 2020, 14, 1009-1016.	0.5	6
356	On some novel bright, dark and optical solitons to the cubic-quintic nonlinear non-paraxial pulse propagation model. Optical and Quantum Electronics, 2021, 53, 1.	3.3	6
357	Diverse novel solutions for the ionic current using the microtubule equation based on two recent computational schemes. Journal of Computational Electronics, 2021, 20, 2604-2613.	2.5	6
358	Bright, dark, and singular optical soliton solutions for perturbed Gerdjikov-Ivanov equation. Thermal Science, 2021, 25, 151-156.	1.1	6
359	Multistage optimal homotopy asymptotic method for the K(2,2) equation arising in solitary waves theory. Thermal Science, 2021, 25, 199-205.	1.1	6
360	Efficient Approaches for Solving Systems of Nonlinear Time-Fractional Partial Differential Equations. Fractal and Fractional, 2022, 6, 32.	3.3	6

#	Article	IF	CITATIONS
361	Soliton solutions for non-linear Kudryashov's equation via three integrating schemes. Thermal Science, 2021, 25, 157-163.	1.1	6
362	Computational Simulations; Abundant Optical Wave Solutions Atangana Conformable Fractional Nonlinear Schrödinger Equation. Advances in Mathematical Physics, 2022, 2022, 1-13.	0.8	6
363	Impacts of Chemical Reaction and Suction/Injection on the Mixed Convective Williamson Fluid past a Penetrable Porous Wedge. Journal of Mathematics, 2022, 2022, 1-10.	1.0	6
364	Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics, 2022, 39, 105682.	4.1	6
365	New Numerical Method for Solving Tenth Order Boundary Value Problems. Mathematics, 2018, 6, 245.	2.2	5
366	Grey and black optical solitary waves, and modulation instability analysis to the perturbed nonlinear SchrĶdinger equation with Kerr law nonlinearity. Journal of Modern Optics, 2019, 66, 647-651.	1.3	5
367	New Positive Solutions of Nonlinear Elliptic PDEs. Applied Sciences (Switzerland), 2020, 10, 4863.	2.5	5
368	Structural, electrical and optical properties of Zn1â^'xCuxO (xÂ=Â0.00â€"0.09) nanoparticles. Journal of King Saud University - Science, 2021, 33, 101330.	3. 5	5
369	Enhanced Heat Transfer by Oil/Multi-Walled Carbon Nano-Tubes Nanofluid. Annales De Chimie: Science Des Materiaux, 2021, 45, 93-103.	0.4	5
370	Computational investigation of an unsteady non-Newtonian and non-isothermal fluid between coaxial contracting channels: A PCM approach. Results in Physics, 2021, 28, 104570.	4.1	5
371	Reproducing kernel method for the solutions of non-linear partial differential equations. Arab Journal of Basic and Applied Sciences, 2021, 28, 80-86.	2.1	5
372	Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schr $ ilde{A}\P$ dinger equation. Nonlinear Analysis: Modelling and Control, 2018, 24, 20-33.	1.6	5
373	Adomian-Pad \tilde{A} @ approximate solutions to the conformable nonlinear heat transfer equation. Thermal Science, 2019, 23, 235-242.	1.1	5
374	New Integral Inequalities via Generalized Preinvex Functions. Axioms, 2021, 10, 296.	1.9	5
375	Influence of the next-nearest neighbor and the boson–boson interactions on U-shaped, W-shaped profile and modulation instability gain spectra in a zig–zag optical lattice. Waves in Random and Complex Media, 0, , 1-14.	2.7	5
376	A Comprehensive Analysis of Hermite–Hadamard Type Inequalities via Generalized Preinvex Functions. Axioms, 2021, 10, 328.	1.9	5
377	Mathematical fractional modeling of transpot phenomena of viscous fluid-flow between two plates. Thermal Science, 2021, 25, 417-421.	1.1	5
378	Theoretical analysis and computational modeling of nonlinear fractional-order victim-two predators model. Results in Physics, 2022, 32, 105139.	4.1	5

#	Article	IF	Citations
379	Solving fractional PDEs by using Daftardar-Jafari method. AIP Conference Proceedings, 2022, , .	0.4	5
380	THE COMPARATIVE REPORT ON DYNAMICAL ANALYSIS ABOUT FRACTIONAL NONLINEAR DRINFELD–SOKOLOV–WILSON SYSTEM. Fractals, 2022, 30, .	3.7	5
381	New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7, 3440-3455.	1.6	5
382	A comparative study about the propagation of water waves with fractional operators. Journal of Ocean Engineering and Science, 2022, , .	4.3	5
383	Different scenarios to enhance thermal comfort by renewable-ecological techniques in hot dry environment. Case Studies in Thermal Engineering, 2022, 32, 101886.	5.7	5
384	Novel Analysis of Hermite–Hadamard Type Integral Inequalities via Generalized Exponential Type m-Convex Functions. Mathematics, 2022, 10, 31.	2.2	5
385	Soliton solutions for nonlinear variable-order fractional Korteweg–de Vries (KdV) equation arising in shallow water waves. Journal of Ocean Engineering and Science, 2022, , .	4.3	5
386	The effects of Hall parameter on the MHD fluid flow and heat transfer induced by uniform radial electric field due to a shrinking rotating disk. Case Studies in Thermal Engineering, 2022, 37, 102222.	5.7	5
387	He's homotopy perturbation method for solving Kortewegâ€de Vries Burgers equation with initial condition. Numerical Methods for Partial Differential Equations, 2010, 26, 1224-1235.	3.6	4
388	ON NEW EXACT SPECIAL SOLUTIONS OF THEGNLS(m,n,p,q) EQUATIONS. Modern Physics Letters B, 2010, 24, 1769-1783.	1.9	4
389	Search for the decayB¯0→ı̂c+p¬pp¬. Physical Review D, 2014, 89, .	4.7	4
390	Asymptotic Behavior of Solutions of Even-Order Advanced Differential Equations. Mathematical Problems in Engineering, 2020, 2020, 1-7.	1.1	4
391	Approximate technique for solving fractional variational problems. Pramana - Journal of Physics, 2020, 94, 1.	1.8	4
392	Atomic Fisher information and entanglement forecasting for quantum system based on artificial neural network and time series model. International Journal of Quantum Chemistry, 2021, 121, e26446.	2.0	4
393	\$ M-\$truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6, 9207-9221.	1.6	4
394	Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods. Open Physics, 2021, 19, 134-145.	1.7	4
395	SOLITARY WAVE SOLUTIONS FOR SPACE-TIME FRACTIONAL COUPLED INTEGRABLE DISPERSIONLESS SYSTEM VIA GENERALIZED KUDRYASHOV METHOD. Facta Universitatis Series Mathematics and Informatics, 0, , 1439.	0.1	4
396	Laser-heated needle for biopsy tract ablation: In vivo study of rabbit liver biopsy. Physica Medica, 2021, 82, 40-45.	0.7	4

#	Article	IF	CITATIONS
397	Study on the helicoidal flow through cylindrical annuli with prescribed shear stresses. Results in Physics, 2021, 23, 103993.	4.1	4
398	The solitary wave solutions to the Klein–Gordon–Zakharov equations by extended rational methods. AIP Advances, 2021, 11, 065218.	1.3	4
399	Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions. Energies, 2021, 14, 6243.	3.1	4
400	Numerical Solutions and Comparisons for Nonlinear Time Fractional Ito Coupled System. Journal of Computational and Theoretical Nanoscience, 2016, 13, 5426-5431.	0.4	4
401	A novel method for nonlinear singular oscillators. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1363-1372.	2.9	4
402	Details on the Hydrothermal Characteristics within a Solar-Channel Heat-Exchanger Provided with Staggered T-Shaped Baffles. Energies, 2021, 14, 6698.	3.1	4
403	Several Integral Inequalities of Hermite–Hadamard Type Related to k-Fractional Conformable Integral Operators. Symmetry, 2021, 13, 1880.	2.2	4
404	Unsteady thermal transport flow of Maxwell clay nanoparticles with generalized Mittag-Leffler kernel of Prabhakar's kind. Case Studies in Thermal Engineering, 2021, 28, 101585.	5.7	4
405	Nabla Fractional Derivative and Fractional Integral on Time Scales. Axioms, 2021, 10, 317.	1.9	4
406	3D numerical study and comparison of thermal-flow performance of various annular finned-tube designs. Journal of Ocean Engineering and Science, 2022, , .	4.3	4
407	New mathematical modelings of the human liver and hearing loss systems with fractional derivatives. International Journal of Biomathematics, 2023, 16, .	2.9	4
408	New unexpected perceptions for the optical solitary wave solution to the cubic-order nonlinear Schrödinger equation. Optical and Quantum Electronics, 2022, 54, 1.	3.3	4
409	Thermo-hydraulic performance evaluation of turbulent flow and heat transfer in a twisted flat tube: A CFD approach. Case Studies in Thermal Engineering, 2022, 35, 102107.	5.7	4
410	Breather-like soliton, M-shaped profile, W-shaped profile, and modulation instability conducted by self-frequency shift of the nonlinear Schrödinger equation. Journal of Computational Electronics, 2022, 21, 733-743.	2.5	4
411	On the numerical solution of initial value problems for nonlinear trapezoidal formulas with different types. International Journal of Computer Mathematics, 2003, 80, 1175-1188.	1.8	3
412	Constructing solitary pattern solutions of the nonlinear dispersive Zakharov–Kuznetsov equation. Chaos, Solitons and Fractals, 2009, 39, 109-119.	5.1	3
413	Optical solitons for cascaded system: Jacobi elliptic functions. Journal of Modern Optics, 2016, 63, 2298-2307.	1.3	3
414	On a System of k-Difference Equations of Order Three. Mathematical Problems in Engineering, 2020, 2020, 1-11.	1.1	3

#	Article	IF	Citations
415	Numerical simulations for the predator–prey model as a prototype of an excitable system. Numerical Methods for Partial Differential Equations, 2024, 40, .	3.6	3
416	A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method. Journal of Function Spaces, 2021, 2021, 1-10.	0.9	3
417	Mild solutions of a fractional partial differential equation with noise. Mathematical Methods in the Applied Sciences, 2021, 44, 5648-5662.	2.3	3
418	Modeling of Dark Solitons for Nonlinear Longitudinal Wave Equation in a Magneto-Electro-Elastic Circular Rod. Sound and Vibration, 2021, 55, 241-251.	0.3	3
419	Series solution to fractional contact problem using Caputo's derivative. Open Physics, 2021, 19, 402-412.	1.7	3
420	Analysis of fractionalâ€order nonlinear dynamic systems under Caputo differential operator. Mathematical Methods in the Applied Sciences, 2021, 44, 10861-10880.	2.3	3
421	Enhanced Outdoor Thermal Comfort Through Natural Design Technique: In-Situ Measurement and Microclimate Simulation. Instrumentation Mesure Metrologie, 2021, 20, 131-136.	0.3	3
422	Mapping Relational Database to OWL Ontology Based on MDE Settings. Revue D'Intelligence Artificielle, 2021, 35, 217-222.	0.6	3
423	Fixed Points of Monotone Total Asymptotically Nonexpansive Mapping in Hyperbolic Space via New Algorithm. Journal of Function Spaces, 2021, 2021, 1-10.	0.9	3
424	Analytical study of the vibrating double-sided quintic nonlinear nano-torsional actuator using higher-order Hamiltonian approach. Journal of Low Frequency Noise Vibration and Active Control, 0, , 146134842110320 .	2.9	3
425	Highly accurate analytical solution for free vibrations of strongly nonlinear Duffing oscillator. Journal of Low Frequency Noise Vibration and Active Control, 0, , 146134842110340.	2.9	3
426	SOME HARDY-TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA DELTA FRACTIONAL INTEGRALS. Fractals, 0, , 2240004.	3.7	3
427	A study of bipolar fuzzy parameterized soft sets and their application in decision making. Journal of Intelligent and Fuzzy Systems, 2021, 41, 2813-2821.	1.4	3
428	Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Thermal Science, 2020, 24, 95-105.	1.1	3
429	Variational Iteration Method for Analytical Solution of the Lane-Emden Type Equation with Singular Initial and Boundary Conditions. Earthline Journal of Mathematical Sciences, 0, , 127-142.	1.0	3
430	Generalized Darboux transformation and higher-order rogue wave solutions to the Manakov system. International Journal of Modern Physics B, 2021, 35, .	2.0	3
431	Implicit Hybrid Fractional Boundary Value Problem via Generalized Hilfer Derivative. Symmetry, 2021, 13, 1937.	2.2	3
432	On exact solutions for new coupled nonlinear models getting evolution of curves in Galilean space. Thermal Science, 2019, 23, 227-233.	1.1	3

#	Article	IF	Citations
433	On fractional KdV-burgers and potential KdV equations: Existence and uniqueness results. Thermal Science, $2019, 23, 2107-2117$.	1.1	3
434	Fundamental solutions for the long–short-wave interaction system. Open Physics, 2020, 18, 1093-1099.	1.7	3
435	Some Dynamic Inequalities via Diamond Integrals for Function of Several Variables. Fractal and Fractional, 2021, 5, 207.	3.3	3
436	Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7, 3912-3938.	1.6	3
437	Simpson's Second-Type Inequalities for Co-Ordinated Convex Functions and Applications for Cubature Formulas. Fractal and Fractional, 2022, 6, 33.	3.3	3
438	Combination of the Parallel/Counter Flows Nanofluid Techniques to Improve the Performances of Double-Tube Thermal Exchangers. Arabian Journal for Science and Engineering, 2022, 47, 7789-7796.	3.0	3
439	Analytical solutions to contact problem with fractional derivatives in the sense of Caputo. Thermal Science, 2020, 24, 313-323.	1.1	3
440	New soliton solutions of Simplified Modified Camassa Holm equation, Klein–Gordon–Zakharov equation using First Integral Method and Exponential Function Method. Results in Physics, 2022, 38, 105506.	4.1	3
441	Fractal fractional analysis of modified KdV equationÂunder three different kernels. Journal of Ocean Engineering and Science, 2022, , .	4.3	3
442	Time fractional super KdV equation: Lie point symmetries, conservation laws, explicit solutions with convergence analysis. International Journal of Geometric Methods in Modern Physics, 2022, 19, .	2.0	3
443	Optical solitons to the Kundu–Mukherjee–Naskar equation in (2+1)-dimensional form via two analytical techniques. Journal of Laser Applications, 2022, 34, .	1.7	3
444	Dynamics of tuberculosis in HIVâ \in "HCV co-infected cases. International Journal of Biomathematics, 2023, 16, .	2.9	3
445	Numerical study for soliton solutions of some nonlinear evolution equations. International Journal of Computer Mathematics, 2005, 82, 469-481.	1.8	2
446	Generation of sub-nanosecond pulse in dual-wavelength praseodymium fluoride fibre laser. Laser Physics, 2019, 29, 105101.	1.2	2
447	Engineering entanglement, geometric phase, and quantum Fisher information of a threeâ€level system with energy dissipation. Mathematical Methods in the Applied Sciences, 2020, 44, 12120.	2.3	2
448	Double-Diffusive of a Nanofluid in a Rectangle-Shape Mounted on a Cavity Saturated by Heterogeneous Porous Media. Journal of Mathematics, 2021, 2021, 1-14.	1.0	2
449	Dynamic behaviors for a $(2+1)$ -dimensional inhomogenous Heisenberg ferromagnetic spin chain system. Modern Physics Letters B, 2021, 35, 2150251.	1.9	2
450	Experimental Study of the Efficiency of a Solar Water Heater Construction from Recycled Plastic Bottles. International Journal of Design and Nature and Ecodynamics, 2021, 16, 121-126.	0.5	2

#	Article	IF	Citations
451	Study of the Interfacial Dynamic Behavior During Slat Formation Alumina on Steel Substrate by FSI/VOF. Mathematical Modelling of Engineering Problems, 2021, 8, 493-500.	0.5	2
452	Highly dispersive optical soliton perturbation with cubic–quintic–septic law via two methods. International Journal of Modern Physics B, O, , 2150276.	2.0	2
453	Stability analysis of timeâ€fractional differential equations with initial data. Mathematical Methods in the Applied Sciences, 2022, 45, 402-410.	2.3	2
454	An Artificial Intelligence Approach for Solving Stochastic Transportation Problems. Computers, Materials and Continua, 2022, 70, 817-829.	1.9	2
455	Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function. AIMS Mathematics, 2021, 6, 13235-13246.	1.6	2
456	On solitary wave solutions of a peptide group system with higher order saturable nonlinearity. Open Physics, 2020, 18, 933-938.	1.7	2
457	Analytical solutions to contact problem with fractional derivatives in the sense of Caputo. Thermal Science, 2020, 24, 313-323.	1.1	2
458	New explicit solitons for the general modified fractional Degasperis–Procesi–Camassa–Holm equation with a truncated M-fractional derivative. Modern Physics Letters B, O, , .	1.9	2
459	Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras. Axioms, 2021, 10, 251.	1.9	2
460	Approximate solutions and conservation laws of the periodic base temperature of convective longitudinal fins in thermal conductivity. Thermal Science, 2019, 23, 267-273.	1.1	2
461	Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrĶdinger equation. Optical and Quantum Electronics, 2022, 54, 1.	3.3	2
462	Fully Legendre spectral collocation technique for stochastic heat equations. Open Physics, 2021, 19, 921-931.	1.7	2
463	A Multiple Fixed Point Result for $ θ , ϕ , ="htt. Journal of Function Spaces, 2022, 2022, 1-10.$	0.9	2
464	A mathematical model for imaging and killing cancer cells by using concepts of the Warburg effect in designing a Graphene system. Mathematical Biosciences and Engineering, 2022, 19, 2985-2995.	1.9	2
465	APPROXIMATE SERIES SOLUTIONS OF A ONE-FACTOR TERM STRUCTURE MODEL FOR BOND PRICING. Annals of Financial Economics, 2021, 16, .	1.4	2
466	Influence of chemical reaction on MHD Newtonian fluid flow on vertical plate in porous medium in conjunction with thermal radiation. Open Physics, 2022, 20, 302-312.	1.7	2
467	Nonlocal magneto-thermoelastic infinite half-space due to a periodically varying heat flow under Caputo–Fabrizio fractional derivative heat equation. Open Physics, 2022, 20, 274-288.	1.7	2
468	Explicit solutions of higher dimensional Burger's equations. Journal of Ocean Engineering and Science, 2022, , .	4.3	2

#	Article	IF	CITATIONS
469	Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces L(.). Journal of Geometry and Physics, 2022, 178, 104554.	1.4	2
470	Subordination Method for the Estimation of Certain Subclass of Analytic Functions Defined by the <code><math.xmlns="http: 1998="" id="M1" math="" mathml"="" www.w3.org=""> <mi>q</mi> -Derivative Operator. Journal of Function Spaces, 2022, 2022, 1-9.</math.xmlns="http:></code>	0.9	2
471	A Reliable Treatment for Solving Nonlinear Two-Point Boundary Value Problems. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 483-489.	1.5	1
472	Some Nonlinear Integral Inequalities Connected with Retarded Terms on Time Scales. Journal of Function Spaces, 2020, 2020, 1-10.	0.9	1
473	Generalized â€expansion method for some soliton wave solutions of Burgersâ€like and potentialKdVequations. Numerical Methods for Partial Differential Equations, 2020, , .	3.6	1
474	Tunable Q-switched ytterbium-doped fibre laser with Nickel Oxide saturable absorber. Indian Journal of Physics, 2021, 95, 361-366.	1.8	1
475	Thermal analysis for an experimental study of a cylindrical vertical solar chimney with internal PVC obstacles. International Journal of Low-Carbon Technologies, 2021, 16, 664-671.	2.6	1
476	Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly \$ (alpha, m) \$-convex functions. AIMS Mathematics, 2021, 6, 11403-11424.	1.6	1
477	W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres. Open Physics, 2021, 19, 26-34.	1.7	1
478	Study of an implicit type coupled system of fractional differential equations by means of topological degree theory. Advances in Difference Equations, 2021, 2021, .	3.5	1
479	Some Novel Generalized Strong Coupled Fixed Point Findings in Cone Metric Spaces with Application to Integral Equations. Journal of Function Spaces, 2021, 2021, 1-9.	0.9	1
480	Assessment of the Resources of Wind Energy in Various Regions of Algeria. International Journal of Sustainable Development and Planning, 2021, 16, 641-650.	0.7	1
481	Optical and W-shaped bright solitons of the conformable derivative nonlinear differential equation. Journal of Computational Electronics, 2021, 20, 1739-1759.	2.5	1
482	Oscillation behavior for neutral delay differential equations of second-order. Mathematical Biosciences and Engineering, 2021, 18, 4390-4401.	1.9	1
483	Biswas–Milovic Model with Quadratic-Cubic Law and Its Optical Solitons. Journal of Advanced Physics, 2018, 7, 387-394.	0.4	1
484	Numerical solution of Painlevand#233; II differential equation. Communications in Numerical Analysis, 2019, 2019, 32-38.	0.1	1
485	Application of New Iterative Method to Fractional Order Integro-Differential Equations. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	1.6	1
486	New Solitary and Periodic Wave Solutions of $(n + 1)$ -Dimensional Fractional Order Equations Modeling Fluid Dynamics. Symmetry, 2021, 13, 2017.	2.2	1

#	Article	IF	CITATIONS
487	Ellipticity angle effect on exact optical solitons and modulation instability in birefringent fiber. Optical and Quantum Electronics, 2021, 53, 1.	3.3	1
488	New Fractional Dynamic Inequalities via Conformable Delta Derivative on Arbitrary Time Scales. Symmetry, 2021, 13, 2049.	2.2	1
489	Heat and mass transfer of oils in baffled and finned ducts. Thermal Science, 2020, 24, 267-276.	1.1	1
490	On the Taylor–Couette flow of fractional oldroyd-B fluids in a cylindrically symmetric configuration using transforms. International Journal of Modern Physics C, 0, , .	1.7	1
491	Application of Optimal Homotopy Asymptotic Method with Daftardar-Jafari Polynomials to Couple System of Boussinesq Equations. International Journal of Applied and Computational Mathematics, 2022, 8, 1.	1.6	1
492	Explicit, periodic and dispersive soliton solutions to the Schamel-KdV equationÂwith constant coefficients. Journal of Ocean Engineering and Science, 2022, , .	4.3	1
493	Effect of area ratio and Reynolds number on the distribution of discharge in dividing manifold. International Journal of Low-Carbon Technologies, 0, , .	2.6	1
494	An Improved Solar Cooling System for Date Safety and Storage under Climate of the Maghreb. International Journal of Photoenergy, 2022, 2022, 1-14.	2.5	1
495	On new explicit solutions for solving Atangana conformable Biswas-Milovic equation with parabolic law nonlinearity in nonlinear optics. Results in Physics, 2022, 40, 105760.	4.1	1
496	Some integral inequalities via new family of preinvex functions. İletişim, Sosyoloji Ve Tarih Araştırmaları Dergisi:, 0, , .	1.8	1
497	On exact solutions of some higher-dimensional nonlinear partial differential equations. International Journal of Computer Mathematics, 2005, 82, 743-754.	1.8	О
498	A Comparison between Adomian Decomposition and Tau Methods. Abstract and Applied Analysis, 2013, 2013, 1-5.	0.7	0
499	Some applications of the Reproducing Kernel Method (RKM) and the Group Preserving Scheme (GPS). AIP Conference Proceedings, 2017, , .	0.4	0
500	Some applications of the novel numerical methods. AIP Conference Proceedings, 2018, , .	0.4	0
501	High performance graphene-like thinly layered graphite based visible light photodetector. Optical and Quantum Electronics, 2019, 51, 1.	3.3	O
502	A coupling technique based on method of line and group preserving scheme for solving the nonlinear wave equation. Journal of Information and Optimization Sciences, 2021, 42, 579-589.	0.3	0
503	ARALD: Arabic Annotation Using Linked Data. Ingenierie Des Systemes D'Information, 2021, 26, 143-149.	0.7	О
504	Effect of the Properties of Chalcopyrite Semiconductors on the Physical and Optical Parameters of Cell Layers with CIGS. Revue Des Composites Et Des Materiaux Avances, 2021, 31, 65-72.	0.6	0

#	Article	IF	CITATIONS
505	New Approaches for Protecting the Computer and Electronic Devices Against Heat Dissipation. International Journal of Safety and Security Engineering, 2021, 11, 279-284.	1.0	0
506	Investigation of the Efficiency of Small-Scale NF/RO Seawater Desalination by Using Artificial Neural Network Modeling. International Journal of Design and Nature and Ecodynamics, 2021, 16, 239-299.	0.5	0
507	A New Variant of B-Spline for the Solution of Modified Fractional Anomalous Subdiffusion Equation. Journal of Function Spaces, 2021, 2021, 1-8.	0.9	0
508	A new geometric modeling of modified magnetic particles with the energy flow and power. International Journal of Geometric Methods in Modern Physics, 2021, 18, .	2.0	0
509	New approach for propagated light with optical solitons by optical fiber in pseudohyperbolic space â,,02. Mathematical Methods in the Applied Sciences, 2023, 46, 8263-8274.	2.3	0
510	Fractal fractional derivative on chemistry kinetics hires problem. AIMS Mathematics, 2021, 7, 1155-1184.	1.6	0
511	The Effect of Bluff Body Shape on Flame Stability in a Non-Premixed Hydrogen-Methan-Air Mixture Combustion. Annales De Chimie: Science Des Materiaux, 2021, 45, 385-392.	0.4	0
512	Design, Construction and Experimental Testing of Solar Water Heaters under Saharan Weather Conditions. International Journal of Sustainable Development and Planning, 2021, 16, 997-1003.	0.7	0
513	Magnetic field dependent viscous fluid-flow between squeezing plates with homogeneous and heterogeneous reactions. Thermal Science, 2021, 25, 423-431.	1.1	0
514	Magnetic charged particles of optical spherical antiferromagnetic model with fractional system. Open Physics, 2021, 19, 590-601.	1.7	0
515	Exact solutions of the cubic Boussinesq and the coupled Higgs system. Thermal Science, 2020, 24, 333-342.	1.1	0
516	Verification of urban light rail transit (LRT) bogie frame structure design lifetime under variable fatigue loads. Mechanical Engineering for Society and Industry, 2022, 2, 42-53.	2.0	0
517	A novel approach of numerical optimization for control theory problems based on generalization of Gigena's method. Asian Journal of Control, 0, , .	3.0	0