João O Malva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999508/publications.pdf

Version: 2024-02-01

ΙΟÃ 5Ο Ο ΜΑΙνΑ

#	Article	IF	CITATIONS
1	Neuroinflammation and aging. , 2021, , 139-151.		0
2	Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. International Journal of Molecular Sciences, 2021, 22, 3101.	1.8	38
3	The Transition From Undernutrition to Overnutrition Under Adverse Environments and Poverty: The Risk for Chronic Diseases. Frontiers in Nutrition, 2021, 8, 676044.	1.6	15
4	Methylmercury Interactions With Gut Microbiota and Potential Modulation of Neurogenic Niches in the Brain. Frontiers in Neuroscience, 2020, 14, 576543.	1.4	8
5	Editorial: Interplay Between Nutrition, the Intestinal Microbiota and the Immune System. Frontiers in Immunology, 2020, 11, 1758.	2.2	4
6	Development of a Healthy Lifestyle Assessment Toolkit for the General Public. Frontiers in Medicine, 2019, 6, 134.	1.2	14
7	What Do Microglia Really Do in Healthy Adult Brain?. Cells, 2019, 8, 1293.	1.8	91
8	Next-generation care pathways for allergic rhinitis and asthma multimorbidity: a model for multimorbid non-communicable diseases—Meeting Report (Part 1). Journal of Thoracic Disease, 2019, 11, 3633-3642.	0.6	11
9	Next-generation care pathways for allergic rhinitis and asthma multimorbidity: a model for multimorbid non-communicable diseases—Meeting Report (Part 2). Journal of Thoracic Disease, 2019, 11, 4072-4084.	0.6	15
10	Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells, 2019, 8, 125.	1.8	49
11	Revisiting Inbred Mouse Models to Study the Developing Brain: The Potential Role of Intestinal Microbiota. Frontiers in Human Neuroscience, 2018, 12, 358.	1.0	7
12	Effect of Hypoproteic and High-Fat Diets on Hippocampal Blood-Brain Barrier Permeability and Oxidative Stress. Frontiers in Nutrition, 2018, 5, 131.	1.6	46
13	Coxsackievirus Adenovirus Receptor Loss Impairs Adult Neurogenesis, Synapse Content, and Hippocampus Plasticity. Journal of Neuroscience, 2016, 36, 9558-9571.	1.7	29
14	Operational definition of active and healthy ageing: Roadmap from concept to change of management. Maturitas, 2016, 84, 3-4.	1.0	21
15	Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?. Frontiers in Cellular Neuroscience, 2014, 8, 59.	1.8	22
16	Can we talk about microglia without neurons? A discussion of microglial cell autonomous properties in culture. Frontiers in Cellular Neuroscience, 2014, 8, 202.	1.8	23
17	New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis. Frontiers in Neuroscience, 2014, 8, 142.	1.4	18
18	Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Frontiers in Neuroscience, 2014, 8, 83.	1.4	146

#	Article	IF	CITATIONS
19	Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells and Development, 2013, 22, 1693-1708.	1.1	19
20	Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies. International Journal of Developmental Neuroscience, 2013, 31, 692-700.	0.7	48
21	Brain-Derived Neurotrophic Factor Promotes Vasculature-Associated Migration of Neuronal Precursors toward the Ischemic Striatum. PLoS ONE, 2013, 8, e55039.	1.1	123
22	Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures. PLoS ONE, 2013, 8, e63529.	1.1	67
23	Multifaces of neuropeptide Y in the brain – Neuroprotection, neurogenesis and neuroinflammation. Neuropeptides, 2012, 46, 299-308.	0.9	103
24	Functional Identification of Neural Stem Cell-Derived Oligodendrocytes. Methods in Molecular Biology, 2012, 879, 165-178.	0.4	4
25	Polymeric Nanoparticles to Control the Differentiation of Neural Stem Cells in the Subventricular Zone of the Brain. ACS Nano, 2012, 6, 10463-10474.	7.3	85
26	The effect of methamphetamine on subventricular zone neurogenesis: Cell death, proliferation and differentiation. , 2012, , .		0
27	Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology, 2012, 62, 2413-2423.	2.0	42
28	Methamphetamineâ€induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment. Journal of Neurochemistry, 2012, 123, 1041-1053.	2.1	28
29	Histamine Stimulates Neurogenesis in the Rodent Subventricular Zone. Stem Cells, 2012, 30, 773-784.	1.4	46
30	Neuropeptide Y inhibits interleukinâ€1 betaâ€induced microglia motility. Journal of Neurochemistry, 2012, 120, 93-105.	2.1	63
31	Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures. European Journal of Neuroscience, 2012, 35, 1672-1683.	1.2	15
32	Protective role of neuropeptide Y Y ₂ receptors in cell death and microglial response following methamphetamine injury. European Journal of Neuroscience, 2012, 36, 3173-3183.	1.2	41
33	Microglia: The Bodyguard and the Hunter of the Adult Neurogenic Niche. , 2012, , 245-279.		2
34	Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. ACS Nano, 2011, 5, 97-106.	7.3	87
35	Methamphetamine Exerts Toxic Effects on Subventricular Zone Stem/Progenitor Cells and Inhibits Neuronal Differentiation. Rejuvenation Research, 2011, 14, 205-214.	0.9	17
36	Functional Evaluation of Neural Stem Cell Differentiation by Single Cell Calcium Imaging. Current Stem Cell Research and Therapy, 2011, 6, 288-296.	0.6	9

#	Article	IF	CITATIONS
37	NPY promotes chemokinesis and neurogenesis in the rat subventricular zone. Journal of Neurochemistry, 2011, 116, 1018-1027.	2.1	43
38	Neuropeptide Y inhibits interleukin-1β-induced phagocytosis by microglial cells. Journal of Neuroinflammation, 2011, 8, 169.	3.1	74
39	Biapigenin Modulates the Activity of the Adenine Nucleotide Translocator in Isolated Rat Brain Mitochondria. Neurotoxicity Research, 2010, 17, 75-90.	1.3	9
40	Methamphetamineâ€induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. European Journal of Neuroscience, 2010, 31, 315-326.	1.2	125
41	The Angiogenic Factor Angiopoietin-1 Is a Proneurogenic Peptide on Subventricular Zone Stem/Progenitor Cells. Journal of Neuroscience, 2010, 30, 4573-4584.	1.7	62
42	Neuropeptide Y Modulation of Interleukin-1β (IL-1β)-induced Nitric Oxide Production in Microglia. Journal of Biological Chemistry, 2010, 285, 41921-41934.	1.6	101
43	Functional Identification of Neural Stem Cell–Derived Oligodendrocytes by Means of Calcium Transients Elicited by Thrombin. Rejuvenation Research, 2010, 13, 27-37.	0.9	15
44	Brain Injury Associated with Widely Abused Amphetamines: Neuroinflammation, Neurogenesis and Blood-Brain Barrier. Current Drug Abuse Reviews, 2010, 3, 239-254.	3.4	41
45	Quercetin, kaempferol and biapigenin fromhypericum perforatum are neuroprotective against excitotoxic insults. Neurotoxicity Research, 2008, 13, 265-279.	1.3	86
46	Modulation of intracellular calcium changes and glutamate release by neuropeptide Y1 and Y2 receptors in the rat hippocampus: differential effects in CA1, CA3 and dentate gyrus. Journal of Neurochemistry, 2008, 79, 286-296.	2.1	67
47	St. John's Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chemistry, 2008, 110, 611-619.	4.2	85
48	Tumor Necrosis Factor-α Modulates Survival, Proliferation, and Neuronal Differentiation in Neonatal Subventricular Zone Cell Cultures. Stem Cells, 2008, 26, 2361-2371.	1.4	198
49	Neuropeptide Y Promotes Neurogenesis in Murine Subventricular Zone. Stem Cells, 2008, 26, 1636-1645.	1.4	88
50	Methamphetamineâ€Induced Early Increase of ILâ€6 and TNFâ€Î± mRNA Expression in the Mouse Brain. Annals of the New York Academy of Sciences, 2008, 1139, 103-111.	1.8	106
51	Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury: a crucial role of P2X ₇ receptorâ€mediated ILâ€1β release. Journal of Neurochemistry, 2008, 106, 271-280.	2.1	78
52	Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Research, 2008, 11, 187-200.	0.9	45
53	Absolute Threshold. , 2008, , 3-3.		0
54	Protein kinase C activity blocks neuropeptide Yâ€mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus. FASEB Journal, 2007, 21, 671-681.	0.2	42

#	Article	IF	CITATIONS
55	GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippocampal mossy fiber synapses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12181-12186.	3.3	127
56	Neuropeptide Y can rescue neurons from cell death following the application of an excitotoxic insult with kainate in rat organotypic hippocampal slice cultures. Peptides, 2007, 28, 288-294.	1.2	33
57	Subventricular Zone Cells as a Tool for Brain Repair. , 2007, , 81-108.		3
58	Inflammation and Neuronal Susceptibility to Excitotoxic Cell Death. , 2007, , 3-35.		0
59	Neuropeptide Y as an Endogenous Antiepileptic, Neuroprotective and Pro-Neurogenic Peptide. Recent Patents on CNS Drug Discovery, 2006, 1, 315-324.	0.9	65
60	Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. NeuroReport, 2005, 16, 393-396.	0.6	32
61	Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry, 2005, 90, 157-167.	4.2	279
62	Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats. Journal of Neurochemistry, 2005, 93, 163-170.	2.1	45
63	Presynaptic kainate receptors are localized close to release sites in rat hippocampal synapses. Neurochemistry International, 2005, 47, 309-316.	1.9	20
64	Modulator Effects of Interleukin-1Â and Tumor Necrosis Factor-Â on AMPA-Induced Excitotoxicity in Mouse Organotypic Hippocampal Slice Cultures. Journal of Neuroscience, 2005, 25, 6734-6744.	1.7	204
65	Neuroprotective effect of H. perforatum extracts on \hat{l}^2 -amyloid-induced neurotoxicity. Neurotoxicity Research, 2004, 6, 119-130.	1.3	57
66	Neuroprotective properties of Valeriana officinalis extracts. Neurotoxicity Research, 2004, 6, 131-140.	1.3	64
67	Presynaptic kainate receptors modulating glutamatergic transmission in the rat hippocampus are inhibited by arachidonic acid. Neurochemistry International, 2004, 44, 371-379.	1.9	8
68	Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochemical Research, 2003, 28, 1501-1515.	1.6	43
69	Subcellular localization of adenosine A1 receptors in nerve terminals and synapses of the rat hippocampus. Brain Research, 2003, 987, 49-58.	1.1	149
70	Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures. Journal of Neurochemistry, 2003, 86, 792-804.	2.1	25
71	Functional interaction between neuropeptide Y receptors and modulation of calcium channels in the rat hippocampus. Neuropharmacology, 2003, 44, 282-292.	2.0	71
72	Solubilization and immunological identification of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat hippocampus. Neuroscience Letters, 2003, 336, 97-100.	1.0	28

#	Article	IF	CITATIONS
73	Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. FASEB Journal, 2003, 17, 1118-1120.	0.2	90
74	UNDERSTANDING THE PHYSIOLOGY OF GLUTAMATE RECEPTORS BY USE OF A PROTOCOL FOR NEURONAL STAINING. American Journal of Physiology - Advances in Physiology Education, 2003, 27, 78-85.	0.8	2
75	Presynaptic N-methyl-d-aspartate receptor activation inhibits neurotransmitter release through nitric oxide formation in rat hippocampal nerve terminals. Molecular Brain Research, 2001, 89, 111-118.	2.5	33
76	Role of kainate receptor activation and desensitization on the [Ca2+]ichanges in cultured rat hippocampal neurons. Journal of Neuroscience Research, 2001, 65, 378-386.	1.3	23
77	Inhibition of glutamate release by BIA 2-093 and BIA 2-024, two novel derivatives of carbamazepine, due to blockade of sodium but not calcium channels11Abbreviations: AED, antiepileptic drug; CBZ, carbamazepine; OXC, oxcarbazepine; and 4-AP, 4-aminopyridine Biochemical Pharmacology, 2001, 61, 1271-1275.	2.0	45
78	Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]ichanges in cultured rat hippocampal neurons. European Journal of Neuroscience, 2000, 12, 2021-2031.	1.2	62
79	Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. European Journal of Pharmacology, 2000, 406, 191-201.	1.7	45
80	Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [3 H]GABA release. FEBS Letters, 2000, 469, 159-162.	1.3	53
81	Kainate Receptors Coupled to G _i /G _o Proteins in the Rat Hippocampus. Molecular Pharmacology, 1999, 56, 429-433.	1.0	44
82	Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology, 1999, 38, 1349-1359.	2.0	79
83	Kainate receptors in hippocampal CA3 subregion: evidence for a role in regulating neurotransmitter release. Neurochemistry International, 1998, 32, 1-6.	1.9	48
84	Increase of the intracellular Ca2+ concentration mediated by transport of glutamate into rat hippocampal synaptosomes: characterization of the activated voltage sensitive Ca2+ channels. Neurochemistry International, 1998, 32, 7-16.	1.9	11
85	Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. European Journal of Pharmacology, 1997, 340, 301-310.	1.7	64
86	Modulation of Glutamate Release from Rat Hippocampal Synaptosomes by Nitric Oxide. Nitric Oxide - Biology and Chemistry, 1997, 1, 315-329.	1.2	42
87	Modulation of Ca2+ channels by activation of adenosine A1 receptors in rat striatal glutamatergic nerve terminals. Neuroscience Letters, 1996, 220, 163-166.	1.0	25
88	Domoic acid induces the release of glutamate in the rat hippocampal CA3 sub-region. NeuroReport, 1996, 7, 1330-1334.	0.6	44
89	Relation of [Ca2+]i to dopamine release in striatal synaptosomes: role of Ca2+ channels. Brain Research, 1995, 669, 234-244.	1.1	35
90	A functionally active presynaptic high-affinity kainate receptor in the rat hippocampal CA3 subregion. Neuroscience Letters, 1995, 185, 83-86.	1.0	39

#	Article	IF	CITATIONS
91	Modulation of dopamine and noradrenaline release and of intracellular Ca ²⁺ concentration by presynaptic glutamate receptors in hippocampus. British Journal of Pharmacology, 1994, 113, 1439-1447.	2.7	43