
Takeyasu Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4999100/publications.pdf Version: 2024-02-01

TAKEVASU SAITO

#	Article	IF	CITATIONS
1	High Speed Through Silicon Via Filling by Copper Electrodeposition. Electrochemical and Solid-State Letters, 2010, 13, D26.	2.2	50
2	Gyrate atrophy with hyperornithinaemia: different types of responsiveness to vitamin B6 British Journal of Ophthalmology, 1981, 65, 478-483.	3.9	43
3	Halogenation and butylation of diamond surfaces by reactions in organic solvents. Diamond and Related Materials, 1998, 7, 830-834.	3.9	42
4	Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diamond and Related Materials, 2007, 16, 767-770.	3.9	37
5	Epitaxial nucleation of diamond on an iridium substrate by bias treatment, for microwave plasma-assisted chemical vapor deposition. Diamond and Related Materials, 1998, 7, 1381-1384.	3.9	31
6	Fabrication of Metal–Oxide–Diamond Field-Effect Transistors with Submicron-Sized Gate Length on Boron-Doped (111) H-Terminated Surfaces Using Electron Beam Evaporated SiO2 and Al2O3. Journal of Electronic Materials, 2011, 40, 247-252.	2.2	29
7	Role of Cuprous Ion in Copper Electrodeposition Acceleration. Journal of the Electrochemical Society, 2015, 162, D199-D203.	2.9	28
8	Single Diallylamine-Type Copolymer Additive Which Perfectly Bottom-Up Fills Cu Electrodeposition. Journal of the Electrochemical Society, 2012, 159, D230-D234.	2.9	27
9	Growth behavior of boron-doped diamond in microwave plasma-assisted chemical vapor deposition using trimethylboron as the dopant source. Diamond and Related Materials, 1998, 7, 88-95.	3.9	24
10	Dynamic behaviour of excited charge transfer systems in polar solvents. Journal of Molecular Structure, 1978, 47, 243-259.	3.6	23
11	A compact hybrid photodetector (HPD). IEEE Transactions on Nuclear Science, 1997, 44, 985-989.	2.0	23
12	Synthesis and Electrical Properties of Phosphorus-Doped Homoepitaxial Diamond (111) by Microwave Plasma-Assisted Chemical Vapor Deposition Using Triethylphosphine as a Dopant Source. Japanese Journal of Applied Physics, 1998, 37, L543-L546.	1.5	23
13	Incorporation of butyl groups into chlorinated diamond surface carbons by organic reactions at ambient temperature. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 929-932.	1.7	16
14	Conformal deposition of WSixfilms on micronâ€sized trenches: The reactivity of film precursors. Applied Physics Letters, 1992, 61, 764-765.	3.3	14
15	Deposition ofWSixFilms from Preactivated Mixture ofWF6/SiH4. Japanese Journal of Applied Physics, 1994, 33, 275-279.	1.5	13
16	Existence of extinction temperature in WSixfilm growth from WF6and SiH4: An indication of the role played by radical chain reactions. Applied Physics Letters, 1993, 62, 1606-1608.	3.3	11
17	Fabrication of diamond MISFET with micron-sized gate length on boron-doped (111) surface. Diamond and Related Materials, 2005, 14, 2043-2046.	3.9	11
18	Suppression of killer defects in diamond vertical-type Schottky barrier diodes. Japanese Journal of Applied Physics, 2020, 59, SGGD10.	1.5	8

Takeyasu Saito

#	Article	IF	CITATIONS
19	Kinetic modeling of tungsten silicide chemical vapor deposition from WF6 and Si2H6: Determination of the reaction scheme and the gas-phase reaction rates. Chemical Engineering Science, 2007, 62, 6403-6411.	3.8	7
20	Effect of Al-doped ZnO or Sn-doped In2O3electrode on ferroelectric properties of (Pb,La)(Zr,Ti)O3capacitors. Japanese Journal of Applied Physics, 2015, 54, 05ED03.	1.5	7
21	Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiO x capacitors. International Journal of Materials Research, 2015, 106, 83-87.	0.3	6
22	Aluminum-doped zinc oxide electrode for robust (Pb,La)(Zr,Ti)O3 capacitors: effect of oxide insulator encapsulation and oxide buffer layer. Journal of Materials Science: Materials in Electronics, 2014, 25, 2155-2161.	2.2	5
23	Al:ZnO top electrodes deposited with various oxygen pressures for ferroelectric (Pb,La)(Zr,Ti)O 3 capacitors. Electronics Letters, 2016, 52, 230-232.	1.0	5
24	Kinetic study of chemical vapor deposition of WSix films from WF6 and SiH2Cl2: Determination of molecular size and reactivity of gas species. Thin Solid Films, 2006, 513, 36-42.	1.8	4
25	Electrical Properties of Sol-Gel Derived PbLaZrTiOx Capacitors with Nonnoble Metal Oxide Top Electrodes. ECS Transactions, 2013, 50, 43-48.	0.5	4
26	Improved reliability properties of (Pb,La)(Zr,Ti)O ₃ ferroelectric capacitors by thin aluminiumâ€doped zinc oxide buffer layer. Electronics Letters, 2014, 50, 799-801.	1.0	4
27	Effect of Counter Ions in a Diallylamine-type Copolymer Additive on Via-filling by Copper Electrodeposition. Electrochemistry, 2014, 82, 430-437.	1.4	3
28	5 Minutes TSV copper electrodeposition. , 2014, , .		3
29	Kinetics of chemical vapor deposition of WSix films from WF6 and SiH2Cl2: Effect of added H2, SiH4, and Si2H6. Microelectronic Engineering, 2006, 83, 1994-2000.	2.4	2
30	High-aspect ratio copper-via filling for three dimensional chip stacking. , 2009, , .		2
31	Structural Analysis of Furfural Resin-based Active Carbon to Control an Electric Double-layer Capacitor. Electrochemistry, 2020, 88, 127-131.	1.4	2
32	Hydrogen profile measurement of (Pb,La)(Zr,Ti)O <inf>3</inf> capacitor with conductive electrode after hydrogen annealing. , 2015, , .		1
33	Sn Negative Electrode Consists of Amorphous Structures for Sodium ion Secondary Batteries. MRS Advances, 2016, 1, 409-414.	0.9	1
34	Synthesis of iron sulfide by using electrodeposition method and discussion of the influence of solvent. , 2018, , .		1
35	Surface structure control and charge/discharge characteristics of bismuth anode materials by electrodeposition for magnesium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 9990-9997.	2.2	1
36	CaBi4Ti4O15 thin film deposition on electroplated Platinum substrates using a sol-gel method. Materials Research Society Symposia Proceedings, 2008, 1113, 1.	0.1	0

Takeyasu Saito

#	Article	IF	CITATIONS
37	Preparation of Smooth Zinc Oxide Thin Film via Liquid Phase Reaction with Cation Additives. Materials Research Society Symposia Proceedings, 2008, 1113, 1.	0.1	0
38	Small diameter via filling electrodeposition by periodical reverse current. , 2013, , .		0
39	The effect of H2 distribution in (Pb,La)(Zr,Ti)O3 capacitors with conductive oxide electrodes on the degradation of ferroelectric properties. Materials Research Society Symposia Proceedings, 2015, 1729, 93-98.	0.1	0
40	The orientation controlled (Pb,La)(Zr,Ti)O <inf>3</inf> capacitor for improved reliabilities. , 2015, , .		0
41	The Effects of Diallylamine Compounds on Copper Via Fill Plating. Journal of Japan Institute of Electronics Packaging, 2015, 18, 245-252.	0.1	0
42	Comparative study of ferroelectric (K,Na)NbO <inf>3</inf> thin films pulsed laser deposition on platinum substrates with different orientation. , 2016, , .		0
43	Evaluatioion of deuterium ion profile in (Pb,La)(Zr,Ti)O ₃ capacitors structures with conductive oxide top electrode by time of flight secondary ion mass spectrometry. , 2016, , .		0
44	Fabrication of doped Pb(Zr,Ti)O 3 capacitors on Pt substrates with different orientations. Electronics Letters, 2016, 52, 1399-1401.	1.0	0
45	Evaluation of titanium carbide thin film coatings on WCâ€Co following surface microstructure treatments. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 711-716.	1.5	0
46	ZIF-8 thin films growth with Al-doped zinc oxide and 2-methylimidazole through gas-solid reaction. , 2018, , .		0
47	Highly relaible (Pb,La)(Zr, Ti)O <inf>3</inf> ferroelectric capacitor with sputtered Sn-doped In <inf>2</inf> O <inf>3</inf> electrode. , 2018, , .		0
48	First principles calculation of the structure and quantum capacity of acidic functional groups on graphene-based capacitor. , 2018, , .		0
49	Thermal conductivity measurement of diamond and β-Ga <inf>2</inf> O <inf>3</inf> thin films by a 3ω method. , 2018, , .		0
50	Structural Analysis and Electric Double Layer Capacitor of Furfural Resin -Based Active Carbon with Different Particle Size. , 2019, , .		0
51	Materials Process Engineering Gr., Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University. Journal of Japan Institute of Electronics Packaging, 2019, 22, 240-240.	0.1	0