Holger Heuer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499905/publications.pdf

Version: 2024-02-01

119 papers 11,120 citations

56 h-index 30058 103 g-index

126 all docs 126 docs citations

126 times ranked

9559 citing authors

#	Article	IF	Citations
1	Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed. Applied and Environmental Microbiology, 2001, 67, 4742-4751.	1.4	1,035
2	Antibiotic resistance gene spread due to manure application on agricultural fields. Current Opinion in Microbiology, $2011, 14, 236-243$.	2.3	797
3	Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 2014, 22, 536-545.	3.5	439
4	Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environmental Microbiology, 2007, 9, 657-666.	1.8	394
5	Analysis of BIOLOG GN Substrate Utilization Patterns by Microbial Communities. Applied and Environmental Microbiology, 1998, 64, 1220-1225.	1.4	342
6	Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 2014, 5, 144.	1.5	320
7	Dynamics and functional relevance of ammoniaâ€oxidizing archaea in two agricultural soils. Environmental Microbiology, 2009, 11, 446-456.	1.8	276
8	Title is missing!. Plant and Soil, 2001, 232, 167-180.	1.8	266
9	Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiology Ecology, 2008, 66, 25-37.	1.3	259
10	Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biology and Biochemistry, 2008, 40, 1583-1591.	4.2	231
11	Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiology Reviews, 2012, 36, 1083-1104.	3.9	222
12	Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results?. Journal of Microbiological Methods, 2007, 69, 470-479.	0.7	208
13	Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution, 2008, 153, 315-322.	3.7	207
14	Exogenous Isolation of Antibiotic Resistance Plasmids from Piggery Manure Slurries Reveals a High Prevalence and Diversity of IncQ-Like Plasmids. Applied and Environmental Microbiology, 2000, 66, 4854-4862.	1.4	200
15	PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiology Ecology, 2011, 75, 497-506.	1.3	198
16	Effects of T4 Lysozyme Release from Transgenic Potato Roots on Bacterial Rhizosphere Communities Are Negligible Relative to Natural Factors. Applied and Environmental Microbiology, 2002, 68, 1325-1335.	1.4	192
17	Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biology and Biochemistry, 2008, 40, 1892-1900.	4.2	190
18	Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures. Applied and Environmental Microbiology, 1998, 64, 2814-2821.	1.4	179

#	Article	IF	Citations
19	Accumulation of Sulfonamide Resistance Genes in Arable Soils Due to Repeated Application of Manure Containing Sulfadiazine. Applied and Environmental Microbiology, 2011, 77, 2527-2530.	1.4	168
20	Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environmental Microbiology, 2002, 4, 912-915.	1.8	164
21	Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. Journal of Microbiological Methods, 2004, 57, 187-195.	0.7	151
22	Increased Abundance and Transferability of Resistance Genes after Field Application of Manure from Sulfadiazine-Treated Pigs. Applied and Environmental Microbiology, 2013, 79, 1704-1711.	1.4	147
23	Polynucleotide Probes That Target a Hypervariable Region of 16S rRNA Genes To Identify Bacterial Isolates Corresponding to Bands of Community Fingerprints. Applied and Environmental Microbiology, 1999, 65, 1045-1049.	1.4	138
24	Bacterial Antagonists of Fungal Pathogens Also Control Root-Knot Nematodes by Induced Systemic Resistance of Tomato Plants. PLoS ONE, 2014, 9, e90402.	1.1	138
25	Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine. PLoS ONE, 2014, 9, e92958.	1.1	132
26	Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes. Frontiers in Microbiology, 2020, 11, 313.	1.5	128
27	Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Environmental Microbiology, 2009, 11, 937-949.	1.8	125
28	Rhizosphere Communities of Genetically Modified Zeaxanthin-Accumulating Potato Plants and Their Parent Cultivar Differ Less than Those of Different Potato Cultivars. Applied and Environmental Microbiology, 2009, 75, 3859-3865.	1.4	122
29	Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiology Ecology, 2000, 33, 41-49.	1.3	121
30	IncP- $1\hat{l}\mu$ Plasmids are Important Vectors of Antibiotic Resistance Genes in Agricultural Systems: Diversification Driven by Class 1 Integron Gene Cassettes. Frontiers in Microbiology, 2012, 3, 2.	1.5	114
31	Specific and Sensitive Detection of Ralstoniasolanacearum in Soil on the Basis of PCR Amplification of fliC Fragments. Applied and Environmental Microbiology, 2003, 69, 7248-7256.	1.4	113
32	Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS ONE, 2017, 12, e0177145.	1.1	113
33	Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiology Ecology, 1999, 29, 365-377.	1.3	112
34	<i>Bacillus</i> and <i>Streptomyces</i> were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 2013, 342, 168-178.	0.7	104
35	Specific Microbial Attachment to Root Knot Nematodes in Suppressive Soil. Applied and Environmental Microbiology, 2014, 80, 2679-2686.	1.4	103
36	Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC - Trends in Analytical Chemistry, 2009, 28, 612-618.	5.8	100

#	Article	IF	Citations
37	Soil Type-Dependent Responses to Phenanthrene as Revealed by Determining the Diversity and Abundance of Polycyclic Aromatic Hydrocarbon Ring-Hydroxylating Dioxygenase Genes by Using a Novel PCR Detection System. Applied and Environmental Microbiology, 2010, 76, 4765-4771.	1.4	98
38	Breaking the <scp>DNA</scp> â€binding code of <i>Ralstonia solanacearum</i> TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytologist, 2013, 199, 773-786.	3.5	98
39	Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem. PLoS ONE, 2013, 8, e59497.	1.1	95
40	Statistical comparisons of community catabolic profiles. Journal of Microbiological Methods, 1997, 30, 71-80.	0.7	93
41	Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. FEMS Microbiology Ecology, 2007, 59, 738-748.	1.3	91
42	Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure. Research in Microbiology, 2009, 160, 427-433.	1.0	86
43	Dynamics of Bacterial Communities in Two Unpolluted Soils after Spiking with Phenanthrene: Soil Type Specific and Common Responders. Frontiers in Microbiology, 2012, 3, 290.	1.5	86
44	Pilot-Scale Evaluation of Bioaugmentation for In-Situ Remediation of a Carbon Tetrachloride-Contaminated Aquifer. Environmental Science & Environmental Science & 1998, 32, 3598-3611.	4.6	85
45	Evaluation of community-level catabolic profiling using BIOLOG GN microplates to study microbial community changes in potato phyllosphere. Journal of Microbiological Methods, 1997, 30, 49-61.	0.7	84
46	Increased Abundance of IncP- $1\hat{1}^2$ Plasmids and Mercury Resistance Genes in Mercury-Polluted River Sediments: First Discovery of IncP- $1\hat{1}^2$ Plasmids with a Complex mer Transposon as the Sole Accessory Element. Applied and Environmental Microbiology, 2006, 72, 7253-7259.	1.4	83
47	Horizontal gene transfer between bacteria. Environmental Biosafety Research, 2007, 6, 3-13.	1.1	80
48	Bacterial phyllosphere communities of Solanum tuberosum L. and T4-lysozyme-producing transgenic variants. FEMS Microbiology Ecology, 1999, 28, 357-371.	1.3	78
49	Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiology Ecology, 2013, 86, 15-25.	1.3	76
50	Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Frontiers in Microbiology, 2013, 4, 420.	1.5	75
51	Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiology Ecology, 2002, 42, 277-288.	1.3	70
52	Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiology Ecology, 2007, 62, 290-302.	1.3	68
53	Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS Microbiology Ecology, 2014, 87, 78-88.	1.3	67
54	Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes. Frontiers in Microbiology, 2018, 9, 1133.	1.5	63

#	Article	IF	CITATIONS
55	Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant- and site-dependent distribution patterns. FEMS Microbiology Ecology, 2011, 75, 507-519.	1.3	61
56	Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid, 2013, 70, 110-119.	0.4	61
57	Shifts in Abundance and Diversity of Mobile Genetic Elements after the Introduction of Diverse Pesticides into an On-Farm Biopurification System over the Course of a Year. Applied and Environmental Microbiology, 2014, 80, 4012-4020.	1.4	60
58	Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiology Ecology, 2008, 65, 361-371.	1.3	59
59	Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiology Ecology, 2013, 83, 125-134.	1.3	59
60	Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environmental Microbiology, 2003, 5, 1257-1269.	1.8	57
61	Plasmid pB8 is closely related to the prototype IncP- $1\hat{l}^2$ plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid, 2005, 54, 135-148.	0.4	56
62	Quantification of IncP-1 Plasmid Prevalence in Environmental Samples. Applied and Environmental Microbiology, 2013, 79, 1410-1413.	1.4	48
63	Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype. FEMS Microbiology Ecology, 2010, 74, 114-123.	1.3	46
64	Repeat Domain Diversity of avrBs3 -Like Genes in Ralstonia solanacearum Strains and Association with Host Preferences in the Field. Applied and Environmental Microbiology, 2007, 73, 4379-4384.	1.4	44
65	Free-Living Nematodes Together With Associated Microbes Play an Essential Role in Apple Replant Disease. Frontiers in Plant Science, 2018, 9, 1666.	1.7	44
66	Genetic Differences in Barley Govern the Responsiveness to $\langle i \rangle N \langle i \rangle$ -Acyl Homoserine Lactone. Phytobiomes Journal, 2019, 3, 191-202.	1.4	43
67	Effect of Sulfadiazine on Abundance and Diversity of Denitrifying Bacteria by Determining nirK and nirS Genes in Two Arable Soils. Microbial Ecology, 2010, 60, 703-707.	1.4	41
68	Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Scientific Reports, 2019, 9, 11477.	1.6	40
69	Distribution of root-knot nematode species and their virulence on vegetables in northern temperate agro-ecosystems of the Pakistani-administered territories of Azad Jammu and Kashmir. Journal of Plant Diseases and Protection, 2017, 124, 201-212.	1.6	37
70	Microbes Attaching to Endoparasitic Phytonematodes in Soil Trigger Plant Defense Upon Root Penetration by the Nematode. Frontiers in Plant Science, 2020, 11, 138.	1.7	35
71	Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. Environmental Pollution, 2017, 229, 854-862.	3.7	31
72	Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats. PLoS ONE, 2014, 9, e89922.	1.1	31

#	Article	IF	Citations
73	Host range diversification within the IncP-1 plasmid group. Microbiology (United Kingdom), 2013, 159, 2303-2315.	0.7	29
74	Soil amendment with digestate from bio-energy fermenters for mitigating damage to Beta vulgaris subspp. by Heterodera schachtii. Applied Soil Ecology, 2016, 99, 129-136.	2.1	27
75	Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	26
76	Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedlings. Applied Soil Ecology, 2000, 15, 211-225.	2.1	25
77	PCR Detection of Oxytetracycline Resistance Genes otr(A) and otr(B) in Tetracycline-Resistant Streptomycete Isolates from Diverse Habitats. Current Microbiology, 2005, 51, 211-216.	1.0	24
78	Biological Suppression of Populations of Heterodera schachtii Adapted to Different Host Genotypes of Sugar Beet. Frontiers in Plant Science, 2020, 11, 812.	1.7	23
79	Exploring the complex response to linuron of bacterial communities from biopurification systems by means of cultivation-independent methods. FEMS Microbiology Ecology, 2016, 92, fiv157.	1.3	22
80	Plant-Nematode Interactions Assisted by Microbes in the Rhizosphere. Current Issues in Molecular Biology, 2019, 30, 75-88.	1.0	22
81	Symbiosis of soybean with nitrogen fixing bacteria affected by root lesion nematodes in a density-dependent manner. Scientific Reports, 2020, 10, 1619.	1.6	20
82	Plasmid-mediated fitness advantage of <i>Acinetobacter baylyi</i> in sulfadiazine-polluted soil. FEMS Microbiology Letters, 2013, 348, 127-132.	0.7	19
83	Microbial Communities in <i>Globodera pallida</i> Females Raised in Potato Monoculture Soil. Phytopathology, 2016, 106, 581-590.	1.1	17
84	A New Bacterial Disease on Mandevilla sanderi, Caused by Pseudomonas savastanoi: Lessons Learned for Bacterial Diversity Studies. Applied and Environmental Microbiology, 2012, 78, 8492-8497.	1.4	16
85	Plant parasitic nematodes on soybean in expanding production areas of temperate regions. Journal of Plant Diseases and Protection, 2018, 125, 567-576.	1.6	16
86	Fungi isolated from cysts of the beet cyst nematode parasitized its eggs and counterbalanced root damages. Journal of Pest Science, 2021, 94, 563-572.	1.9	15
87	Antagonistic role of the microbiome from a Meloidogyne hapla-suppressive soil against species of plant-parasitic nematodes with different life strategies. Nematology, 2019, 22, 75-86.	0.2	14
88	Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils. Microbial Biotechnology, 2017, 10, 434-449.	2.0	13
89	Characterization oftet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm. FEMS Microbiology Ecology, 2016, 92, fiw075.	1.3	11
90	Comprehensive report on the prevalence of rootâ€knot nematodes in the Poonch division of Azad Jammu and Kashmir, Pakistan. Journal of Phytopathology, 2020, 168, 322-336.	0.5	11

#	Article	IF	CITATIONS
91	Characterisation of cereal cyst nematodes in Egypt based on morphometrics, RFLP and rDNA-ITS sequence analyses. Nematology, 2015, 17, 103-115.	0.2	9
92	Priming Soybean cv. Primus Leads to Successful Systemic Defense Against the Root-Lesion Nematode, Pratylenchus penetrans. Frontiers in Plant Science, 2021, 12, 651943.	1.7	9
93	Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Applied Soil Ecology, 2022, 172, 104344.	2.1	9
94	Comparison of Independent Samples of High-Dimensional Data by Pairwise Distance Measures. Biometrical Journal, 2007, 49, 230-241.	0.6	8
95	More functional genes and convergent overall functional patterns detected by geochip in phenanthrene-spiked soils. FEMS Microbiology Ecology, 2012, 82, 148-156.	1.3	8
96	First Report of the Root-Knot Nematode <i>Meloidogyne hapla</i> Parasitizing Roses in Ethiopia. Plant Disease, 2014, 98, 1286-1286.	0.7	8
97	Effector gene <i>vap1</i> based DGGE fingerprinting to assess variation within and among <i>Heterodera schachtii</i> populations. Journal of Nematology, 2018, 50, 517-528.	0.4	8
98	Networks of free-living nematodes and co-extracted fungi, associated with symptoms of apple replant disease. Applied Soil Ecology, 2022, 172, 104368.	2.1	8
99	How to Assess the Abundance and Diversity of Mobile Genetic Elements in Soil Bacterial Communities?. , 2006, , 313-330.		7
100	A new proposal for a principal componentâ€based test for highâ€dimensional data applied to the analysis of PhyloChip data. Biometrical Journal, 2012, 54, 94-107.	0.6	7
101	Plants Specifically Modulate the Microbiome of Root-Lesion Nematodes in the Rhizosphere, Affecting Their Fitness. Microorganisms, 2021, 9, 679.	1.6	7
102	Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?. FEMS Microbiology Ecology, 2016, 92, fiw066.	1.3	6
103	Effects of Cover Cropping on Microbial Communities Associated with Heterodera schachtii and Nematode Virulence. Soil Systems, 2019, 3, 67.	1.0	6
104	Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiology Ecology, 1999, 29, 365-377.	1.3	6
105	Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiology Ecology, 2000, 33, 41-49.	1.3	5
106	Alleviation of Nematode-Mediated Apple Replant Disease by Pre-Cultivation of Tagetes. Horticulturae, 2021, 7, 433.	1.2	5
107	Significant genetic differences among Heterodera schachtii populations within and among sugar beet production areas. Nematology, 2020, 22, 165-177.	0.2	4
108	Identification of msp1 Gene Variants in Populations of Meloidogyne incognita Using PCR-DGGE. Journal of Nematology, 2014, 46, 275-80.	0.4	4

#	Article	IF	CITATIONS
109	Nematode–Microbe Complexes in Soils Replanted with Apple. Microorganisms, 2022, 10, 157.	1.6	4
110	Effector gene vap1-based DGGE fingerprinting to assess variation within and among Globodera species and populations. Nematology, 2019, 21, 1023-1036.	0.2	2
111	Evaluation of soybean cultivars for their susceptibility to root-lesion nematodes under temperate conditions. Nematology, 2019, 21, 523-531.	0.2	2
112	Responsiveness of Elite Cultivars vs. Ancestral Genotypes of Barley to Beneficial Rhizosphere Microbiome, Supporting Plant Defense Against Root-Lesion Nematodes. Frontiers in Plant Science, 2021, 12, 721016.	1.7	2
113	Ozonated water electrolytically generated by diamond-coated electrodes controlled phytonematodes in replanted soil. Journal of Plant Diseases and Protection, 0, , 1.	1.6	2
114	Draft Genome Sequence of Pseudomonas sp. nov. H2. Genome Announcements, 2015, 3, .	0.8	1
115	Impact of cropping sequences and production strategies on soil suppressiveness against cereal cyst nematodes. Applied Soil Ecology, 2016, 107, 381-393.	2.1	1
116	Genetic variation of Meloidogyne spp. of brinjal reveals their difference in pathogenicity and hatching. Archives of Phytopathology and Plant Protection, 0, , 1-22.	0.6	1
117	Let's be inclusive - the time of looking at individual plant parasitic nematodes is over, and new technologies allow for it, 2021, , 403-407.		1
118	Report on the 42nd joint meeting of the DPG-working group Nematology and the working group "free living nematodesâ€. Journal of Plant Diseases and Protection, 2014, 121, 187-189.	1.6	0
119	Plant-Nematode Interactions Assisted by Microbes in the Rhizosphere. , 2018, , .		O