
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998960/publications.pdf Version: 2024-02-01

Μλίλ ΒιιιίλΝ

#	Article	IF	CITATIONS
1	Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, 124-138.	0.3	61
2	Formation of three-dimensional quantum-dot superlattices in amorphous systems: Experiments and Monte Carlo simulations. Physical Review B, 2009, 79, .	3.2	57
3	Response of GaN to energetic ion irradiation: conditions for ion track formation. Journal Physics D: Applied Physics, 2015, 48, 325304.	2.8	40
4	The influence of deposition temperature on the correlation of Ge quantum dot positions in amorphous silica matrix. Nanotechnology, 2009, 20, 085612.	2.6	35
5	Recent advances in vacuum sciences and applications. Journal Physics D: Applied Physics, 2014, 47, 153001.	2.8	33
6	Ge quantum dot lattices in Al2O3 multilayers. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	27
7	Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	27
8	Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology. Thin Solid Films, 2018, 660, 120-160.	1.8	27
9	Self-assembling of Ge quantum dots in an alumina matrix. Physical Review B, 2010, 82, .	3.2	26
10	Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation. Applied Physics Letters, 2009, 95, 063104.	3.3	24
11	Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size. Nanophotonics, 2017, 6, 1055-1062.	6.0	22
12	Low-temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Research Letters, 2011, 6, 341.	5.7	18
13	Formation of swift heavy ion tracks on a rutile TiO ₂ (001) surface. Journal of Applied Crystallography, 2016, 49, 1704-1712.	4.5	18
14	Structural and charge trapping properties of two bilayer (Ge+SiO2)/SiO2 films deposited on rippled substrate. Applied Physics Letters, 2010, 97, 163117.	3.3	17
15	Generation of an ordered Ge quantum dot array in an amorphous silica matrix by ion beam irradiation: Modeling and structural characterization. Physical Review B, 2010, 81, .	3.2	17
16	Design of quantum dot lattices in amorphous matrices by ion beam irradiation. Physical Review B, 2011, 84, .	3.2	16
17	Tuning the growth properties of Ge quantum dot lattices in amorphous oxides by matrix type. Journal of Applied Crystallography, 2013, 46, 1490-1500.	4.5	16
18	Production of three-dimensional quantum dot lattice of Ge/Si core–shell quantum dots and Si/Ge layers in an alumina glass matrix. Nanotechnology, 2015, 26, 065602.	2.6	16

#	Article	IF	CITATIONS
19	Conditions for formation of germanium quantum dots in amorphous matrices by MeV ions: Comparison with standard thermal annealing. Physical Review B, 2012, 86, .	3.2	15
20	Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures. Crystals, 2019, 9, 479.	2.2	14
21	Preparation of non-oxidized Ge quantum dot lattices in amorphous Al ₂ O ₃ , Si ₃ N ₄ and SiC matrices. Nanotechnology, 2019, 30, 335601.	2.6	14
22	Formation of void lattice after annealing of Ge quantum dot lattice in alumina matrix. Applied Physics Letters, 2010, 97, .	3.3	13
23	Analysis of 2D GISAXS patterns obtained on semiconductor nanocrystals. Vacuum, 2003, 71, 65-70.	3.5	12
24	Compositionally modulated ripples during composite film growth: Three-dimensional pattern formation at the nanoscale. Physical Review B, 2014, 89, .	3.2	12
25	Direct ion beam synthesis of Il–VI nanocrystals. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 407-413.	1.4	11
26	Ion beam synthesis and characterization of Ge nanoparticles in SiO2. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 843-846.	1.4	11
27	Formation of Ge-nanocrystals in SiO2 matrix by magnetron sputtering and post-deposition thermal treatment. Superlattices and Microstructures, 2008, 44, 323-330.	3.1	11
28	Size and spatial homogeneity of SiGe quantum dots in amorphous silica matrix. Journal of Applied Physics, 2009, 106, 084319.	2.5	11
29	Grazing incidence X-ray study of Ge-nanoparticle formation in (Ge:SiO2)/SiO2 multilayers. Thin Solid Films, 2009, 517, 1899-1903.	1.8	10
30	Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation. Applied Physics Letters, 2012, 101, 103112.	3.3	10
31	Structural and electrical studies of ultrathin layers with Si0.7Ge0.3 nanocrystals confined in a SiGe/SiO2 superlattice. Journal of Applied Physics, 2012, 111, 104323.	2.5	10
32	Ge Quantum Dots Coated with Metal Shells (Al, Ta, and Ti) Embedded in Alumina Thin Films for Solar Energy Conversion. ACS Applied Nano Materials, 2020, 3, 8640-8650.	5.0	10
33	Evaluating Automatic Term Extraction Methods on Individual Documents. , 2019, , .		10
34	Structural study of Si1â^'xGex nanocrystals embedded in SiO2 films. Thin Solid Films, 2010, 518, 2569-2572.	1.8	9
35	Growth of spatially ordered Ge nanoclusters in an amorphous matrix on rippled substrates. Physical Review B, 2010, 82, .	3.2	9
36	Effect of bi-layer ratio in ZnO/Al2O3 multilayers on microstructure and functional properties of ZnO nanocrystals embedded in Al2O3 matrix. Applied Physics A: Materials Science and Processing, 2014, 115, 283-289.	2.3	9

#	Article	IF	CITATIONS
37	Ge quantum dot lattices in alumina prepared by nitrogen assisted deposition: Structure and photoelectric conversion efficiency. Solar Energy Materials and Solar Cells, 2020, 218, 110722.	6.2	9
38	Multilayers of Ge nanocrystals embedded in Al2O3 matrix: Structural and electrical studies. Microelectronic Engineering, 2010, 87, 2508-2512.	2.4	8
39	Influence of the deposition parameters on the growth of SiGe nanocrystals embedded in Al2O3 matrix. Microelectronic Engineering, 2011, 88, 509-513.	2.4	8
40	Influence of annealing conditions on the formation of regular lattices of voids and Ge quantum dots in an amorphous alumina matrix. Nanotechnology, 2012, 23, 405605.	2.6	8
41	Growth of a three-dimensional anisotropic lattice of Ge quantum dots in an amorphous alumina matrix. Journal of Applied Crystallography, 2013, 46, 709-715.	4.5	8
42	Infrared spectroscopy of ion tracks in amorphous SiO2 and comparison to gamma irradiation induced changes. Journal of Nuclear Materials, 2019, 514, 74-83.	2.7	8
43	3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix. Nanomaterials, 2020, 10, 1363.	4.1	8
44	GISAXS studies of morphology and size distribution of CdS nanocrystals formed in SiO2 by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 191-195.	1.4	7
45	Influence of stoichiometry deviations on properties of ion-beam synthesized CdSe QDs. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 302-305.	1.4	7
46	Self-assembled growth of Ni nanoparticles in amorphous alumina matrix. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	7
47	Optical absorption in array of Ge/Al-shell nanoparticles in an Alumina matrix. Scientific Reports, 2020, 10, 65.	3.3	7
48	lon beam synthesis of buried Zn-VI quantum dots in SiO2– grazing incidence small-angle X-ray scattering studies. Journal of Applied Crystallography, 2003, 36, 439-442.	4.5	6
49	Grazing incidence small-angle X-ray scattering studies of the synthesis and growth of CdS quantum dots from constituent atoms in SiO2matrix. Journal of Applied Crystallography, 2003, 36, 443-446.	4.5	6
50	Transmission electron microscopy study of carbon nanophases produced by ion beam implantation. Materials Science and Engineering C, 2006, 26, 1202-1206.	7.3	6
51	Raman scattering on quadrupolar vibrational modes of spherical nanoparticles. Journal of Applied Physics, 2008, 104, .	2.5	6
52	Crystal structure of defect-containing semiconductor nanocrystals – an X-ray diffraction study. Journal of Applied Crystallography, 2009, 42, 660-672.	4.5	6
53	Surface characterization of thin silicon-rich oxide films. Journal of Molecular Structure, 2011, 993, 214-218.	3.6	6
54	Preparation of regularly ordered Ge quantum dot lattices in amorphous matrices. Vacuum, 2012, 86, 733-736.	3.5	6

#	Article	IF	CITATIONS
55	Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions. New Journal of Physics, 2016, 18, 093032.	2.9	6
56	Charge storage behavior of nanostructures based on SiGe nanocrystals embedded in Al2O3 matrix. European Physical Journal B, 2013, 86, 1.	1.5	5
57	Co nanocrystals in amorphous multilayers – a structure study. Journal of Applied Crystallography, 2013, 46, 1711-1721.	4.5	5
58	Self-assembly of Ge quantum dots on periodically corrugated Si surfaces. Applied Physics Letters, 2015, 107, 203101.	3.3	5
59	Impact of the Zn source on the RSN-type zeolite formation. Inorganic Chemistry Frontiers, 2019, 6, 2279-2290.	6.0	5
60	\$ ewcommand{t}{eta} t\$ -TaON thin films: production by reactive magnetron sputtering and the question of non-stoichiometry. Journal Physics D: Applied Physics, 2019, 52, 305304.	2.8	5
61	The evolution of the morphology of Ge nanocrystals formed by ion implantation in SiO2. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 272-275.	1.4	4
62	Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions. Journal of Applied Physics, 2012, 111, 074316.	2.5	4
63	GISAXS analysis of ion beam modified films and surfaces. Computer Physics Communications, 2017, 212, 69-81.	7.5	4
64	Influence of Structure on Electronic Charge Transport in 3D Ge Nanowire Networks in an Alumina Matrix. Scientific Reports, 2019, 9, 5432.	3.3	4
65	Materials modification using ions with energies below 1MeV/u. Nuclear Instruments & Methods in Physics Research B, 2013, 317, 143-148.	1.4	3
66	Fe2O3/TiO2 nanoparticles—a complex structural study. Thin Solid Films, 2014, 564, 65-72.	1.8	3
67	Closely packed Ge quantum dots in ITO matrix: influence of Ge crystallization on optical and electrical properties. Materials Research Express, 2016, 3, 065003.	1.6	3
68	Annealing induced semiconductor-metal transition in Ge+ITO film. Applied Physics Letters, 2017, 111, 172104.	3.3	3
69	Deposition of Thin Alumina Films Containing 3D Ordered Network of Nanopores on Porous Substrates. Materials, 2020, 13, 2883.	2.9	3
70	Real-time tracking of the self-assembled growth of a 3D Ge quantum dot lattice in an alumina matrix. Journal of Applied Crystallography, 2020, 53, 1029-1038.	4.5	3
71	Implantation conditions for diamond nanocrystal formation in amorphous silica. Journal of Applied Physics, 2008, 104, 034315.	2.5	2
72	X-ray characterization of semiconductor nanostructures. Semiconductor Science and Technology, 2011, 26, 064002.	2.0	2

#	Article	IF	CITATIONS
73	Ellipsometric study of thermally induced redistribution and crystallization of Ge in Ge:SiO2 mixture layers. Thin Solid Films, 2011, 519, 5419-5423.	1.8	2
74	Influence of annealing conditions on the structural and photoluminescence properties of Ge quantum dot lattices in a continuous Ge + Al2 O3 film. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1516-1521.	1.8	2
75	Kinetic Monte Carlo simulation of growth of Ge quantum dot multilayers with amorphous matrix. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	2
76	Ta2N3 nanocrystals grown in Al2O3 thin layers. Beilstein Journal of Nanotechnology, 2017, 8, 2162-2170.	2.8	2
77	Structural, Optical and Electrical Properties of Al+MoO3 and Au+MoO3 Thin Films Prepared by Magnetron Codeposition. Materials, 2021, 14, 766.	2.9	2
78	Hollow metal island films as plasmonic sensors produced by galvanic replacement. Surfaces and Interfaces, 2021, , 101483.	3.0	2
79	3D networks of nanopores in alumina: Structural and optical properties. Microporous and Mesoporous Materials, 2021, 325, 111306.	4.4	2
80	Structural and morphological properties of Fe2O3/TiO2 nanocrystals in silica matrix. Thin Solid Films, 2012, 520, 4800-4802.	1.8	1
81	Influence of RF-sputtering power on formation of vertically stacked Si _{1â°'<i>x</i>} Ge _{<i>x</i>} nanocrystals between ultra-thin amorphous Al ₂ O ₃ layers: structural and photoluminescence properties. Journal Physics D: Applied Physics. 2013. 46. 385301.	2.8	1
82	Studies of bronze corrosion phenomena by EBS and complementary techniques. Nuclear Instruments & Methods in Physics Research B, 2019, 461, 154-158.	1.4	1
83	Complementary application of Raman scattering and GISAXS in characterization of embedded semiconductor QDs. Superlattices and Microstructures, 2008, 44, 385-394.	3.1	0
84	Characterisation of thin LPCVD silicon-rich oxide films. Proceedings of SPIE, 2011, , .	0.8	0
85	Electrical Characterization of Ge Nanocrystals in Oxide Matrix. Materials Research Society Symposia Proceedings, 2011, 1305, 1.	0.1	0
86	X-ray small-angle scattering from sputtered CeO2/C bilayers. Journal of Applied Physics, 2013, 113, 024301.	2.5	0
87	Magnetic properties of nickel nanoparticles embedded in amorphous Al2O3matrix. Journal of Physics: Conference Series, 2014, 568, 042022.	0.4	0
88	Structural characterization of quantum dot lattices by GISAXS: models and software packageGisaxStudio. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s378-s378.	0.1	0
89	Temperature behaviour of the average size of nanoparticle lattices co-deposited with an amorphous matrix. Analysis of Ge + Al2O3and Ni + Al2O3thin films. Journal of Physics Condensed Matter, 2017, 29, 435301.	1.8	0