
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998727/publications.pdf Version: 2024-02-01

IAMES HACMAN

#	Article	IF	CITATIONS
1	Chromodomain helicase DNAâ€binding 4 (CHD4) regulates early B cell identity and V(D)J recombination*. Immunological Reviews, 2022, 305, 29-42.	2.8	7
2	Neuroimaging Findings in Patients with <i>EBF3</i> Mutations: Report of Two Cases. Molecular Syndromology, 2021, 12, 186-193.	0.3	3
3	EBF1 and PAX5 control pro-B cell expansion via opposing regulation of the <i>Myc</i> gene. Blood, 2021, 137, 3037-3049.	0.6	22
4	GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nature Communications, 2021, 12, 494.	5.8	28
5	Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica, 2020, 105, 585-597.	1.7	32
6	CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10927-10936.	3.3	35
7	PU.1 Enforces Hematopoietic Stem Cell Quiescence during Chronic Inflammation. Blood, 2019, 134, 822-822.	0.6	0
8	The transcription factors GATA2 and microphthalmia-associated transcription factor regulate Hdc gene expression in mast cells and are required for IgE/mast cell–mediated anaphylaxis. Journal of Allergy and Clinical Immunology, 2018, 142, 1173-1184.	1.5	41
9	Specific Recognition of Arginine Methylated Histone Tails by JMJD5 and JMJD7. Scientific Reports, 2018, 8, 3275.	1.6	23
10	Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis. Leukemia, 2018, 32, 38-48.	3.3	16
11	Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Molecular and Cellular Biology, 2018, 38, .	1.1	7
12	Rheumatoid Arthritis Causes Hematopoietic Stem Cell Reprogramming to Maintain Functionality. Blood, 2018, 132, 2573-2573.	0.6	1
13	De Novo Mutations in EBF3 Cause a Neurodevelopmental Syndrome. American Journal of Human Genetics, 2017, 100, 138-150.	2.6	52
14	Critical Functions of IRF4 in B and T Lymphocytes. Journal of Immunology, 2017, 199, 3715-3716.	0.4	23
15	Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1+/–Bcl-xLTg mice. Oncogenesis, 2017, 6, e355-e355.	2.1	5
16	Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7717-E7726.	3.3	48
17	Editorial overview: Lymphocyte development and activation: Lymphoid cell differentiation: choosing paths to traverse the immune landscape. Current Opinion in Immunology, 2016, 39, v-vii.	2.4	1
18	Autoimmune vitiligo is associated with a transcriptional regulator that affects expression of HLA-A*02: 01 in vivo. Journal of Dermatological Science, 2016, 84, e140-e141.	1.0	0

#	Article	IF	CITATIONS
19	Autoimmune vitiligo is associated with gain-of-function by a transcriptional regulator that elevates expression of <i>HLA-A*02:01</i> in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1357-1362.	3.3	46
20	ETV6 Regulates Pax5 Expression in Early B Cell Development. Blood, 2016, 128, 2655-2655.	0.6	1
21	Abstract 2000: ETV6 represses Pax5 in early B-cell development. , 2016, , .		0
22	Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood, 2015, 125, 4052-4059.	0.6	35
23	Transcriptional Regulation of Early B Cell Development. , 2015, , 35-53.		1
24	Miâ€2/Nu <scp>RD</scp> chromatin remodeling complexes regulate B and T″ymphocyte development and function. Immunological Reviews, 2014, 261, 126-140.	2.8	52
25	Plasma Cells for Hire: Prior Experience Required. Immunity, 2013, 39, 89-91.	6.6	0
26	The steroidogenic enzyme Cyp11a1 is essential for development of peanut-induced intestinal anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 132, 1174-1183.e8.	1.5	27
27	Activation of the Steroidogenic Enzyme Cyp11a1 Is Essential for Development of Peanut-Induced Intestinal Anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, AB143.	1.5	0
28	Activation of Aicda gene transcription by Pax5 in plasmacytoma cells. Immunologic Research, 2013, 55, 155-161.	1.3	3
29	<scp>I</scp> karos promotes rearrangement of <scp>TCR</scp> α genes in an <scp>I</scp> karos null thymoma cell line. European Journal of Immunology, 2013, 43, 521-532.	1.6	11
30	Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 787-792.	3.3	96
31	MBD2 and Multiple Domains of CHD4 Are Required for Transcriptional Repression by Mi-2/NuRD Complexes. Molecular and Cellular Biology, 2012, 32, 5078-5088.	1.1	56
32	Opposing Functions of the ETS Factor Family Define Shh Spatial Expression in Limb Buds and Underlie Polydactyly. Developmental Cell, 2012, 22, 459-467.	3.1	129
33	Bivalent Recognition of a Single Nucleosome by the Tandem PHD Fingers of CHD4 is Required for CHD4-Mediated Repression. Biophysical Journal, 2012, 102, 480a.	0.2	0
34	A doseâ€dependent role for EBF1 in repressing nonâ€Bâ€cellâ€specific genes. European Journal of Immunology, 2011, 41, 1787-1793.	1.6	33
35	B Lymphocyte Lineage Specification, Commitment and Epigenetic Control of Transcription by Early B Cell Factor 1. Current Topics in Microbiology and Immunology, 2011, 356, 17-38.	0.7	42
36	From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Current Opinion in Immunology, 2010, 22, 177-184.	2.4	94

#	Article	IF	CITATIONS
37	A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunology, 2010, 11, 635-643.	7.0	475
38	Interaction of JMJD6 with single-stranded RNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14568-14572.	3.3	101
39	Compound haploinsufficiencies of <i>Ebf1</i> and <i>Runx1</i> genes impede B cell lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7869-7874.	3.3	44
40	Cooperative Transcriptional Regulation of the Essential Pancreatic Islet Gene NeuroD1 (Beta2) by Nkx2.2 and Neurogenin 3. Journal of Biological Chemistry, 2009, 284, 31236-31248.	1.6	55
41	Conveying the Message: Identification of Ig-α and Ig-β as Components of the B Cell Receptor Complex. Journal of Immunology, 2009, 183, 1503-1504.	0.4	3
42	Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11258-11263.	3.3	129
43	Ebf1-mediated down-regulation of Id2 and Id3 is essential for specification of the B cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 552-557.	3.3	83
44	Highly Cooperative Recruitment of Ets-1 and Release of Autoinhibition by Pax5. Journal of Molecular Biology, 2009, 392, 452-464.	2.0	22
45	The Mi-2/NuRD complex: A critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics, 2009, 4, 532-536.	1.3	73
46	The â€ [~] zinc knuckle' motif of Early B cell Factor is required for transcriptional activation of B cell-specific genes. Molecular Immunology, 2008, 45, 3786-3796.	1.0	29
47	Early B cell factor: Regulator of B lineage specification and commitment. Seminars in Immunology, 2008, 20, 221-227.	2.7	64
48	Loss of pax5 heterozygosity in mice promotes B cellâ€specific lymphoproliferative disease. FASEB Journal, 2008, 22, 348-348.	0.2	0
49	EBF and Runx1 are required for B cell specific transcription and lineage identity. FASEB Journal, 2008, 22, 350-350.	0.2	0
50	Temporal Dissection of T-bet Functions. Journal of Immunology, 2007, 178, 3457-3465.	0.4	56
51	Beryllium-Induced TNF-α Production Is Transcription-Dependent in Chronic Beryllium Disease. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 191-200.	1.4	14
52	"Hands-On―Regulation of B Cell Development by the Transcription Factor Pax5. Immunity, 2007, 27, 8-10.	6.6	6
53	Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity, 2007, 27, 281-295.	6.6	1,542
54	Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. European Journal of Immunology, 2007, 37, 1022-1032.	1.6	36

#	Article	IF	CITATIONS
55	Lymphocyte development. Current Opinion in Immunology, 2007, 19, 113-115.	2.4	Ο
56	Structural Insights into Histone Demethylation by JMJD2 Family Members. Cell, 2006, 125, 691-702.	13.5	341
57	Transcription factor Pax5 (BSAP) transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes. Nature Immunology, 2006, 7, 616-624.	7.0	75
58	Transcription factors drive B cell development. Current Opinion in Immunology, 2006, 18, 127-134.	2.4	73
59	Early B-cell factor â€~pioneers' the way for B-cell development. Trends in Immunology, 2005, 26, 455-461.	2.9	44
60	Functional Analysis of â^'571 IL-10 Promoter Polymorphism Reveals a Repressor Element Controlled by Sp1. Journal of Immunology, 2004, 173, 3215-3222.	0.4	63
61	Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nature Immunology, 2004, 5, 1069-1077.	7.0	167
62	Identification of an Sp factor-dependent promoter in GCET, a gene expressed at high levels in germinal center B cells. Molecular Immunology, 2004, 41, 1145-1153.	1.0	7
63	Activation of the Early B-Cell-Specific mb-1 (Ig-α) Gene by Pax-5 Is Dependent on an Unmethylated Ets Binding Site. Molecular and Cellular Biology, 2003, 23, 1946-1960.	1.1	86
64	Requirements for selective recruitment of Ets proteins and activation of mb-1/lg-Â gene transcription by Pax-5 (BSAP). Nucleic Acids Research, 2003, 31, 5483-5489.	6.5	34
65	Early B-Cell Factor, E2A, and Pax-5 Cooperate To Activate the Early B Cell-Specific mb-1 Promoter. Molecular and Cellular Biology, 2002, 22, 8539-8551.	1.1	94
66	Roles of EBF and Pax-5 in B lineage commitment and development. Seminars in Immunology, 2002, 14, 415-422.	2.7	43
67	Structural Studies of Ets-1/Pax5 Complex Formation on DNA. Molecular Cell, 2001, 8, 1267-1276.	4.5	180
68	Highly conserved amino acids in Pax and Ets proteins are required for DNA binding and ternary complex assembly. Nucleic Acids Research, 2001, 29, 4154-4165.	6.5	30
69	A site in the complement receptor 2 (CR2/CD21) silencer is necessary for lineage specific transcriptional regulation. International Immunology, 2001, 13, 657-664.	1.8	36
70	EGL-38 Pax regulates the <i>ovo</i> -related gene <i>lin-48</i> during <i>Caenorhabditis elegans</i> organ development. Development (Cambridge), 2001, 128, 2857-2865.	1.2	64
71	EGL-38 Pax regulates the ovo-related gene lin-48 during Caenorhabditis elegans organ development. Development (Cambridge), 2001, 128, 2857-65.	1.2	44
72	Pax-5/BSAP: Regulator of Specific Gene Expression and Differentiation in B Lymphocytes. Current Topics in Microbiology and Immunology, 2000, 245, 169-194.	0.7	27

#	Article	IF	CITATIONS
73	The Highly Conserved β-Hairpin of the Paired DNA-Binding Domain Is Required for Assembly of Pax-Ets Ternary Complexes. Molecular and Cellular Biology, 1999, 19, 2231-2241.	1.1	57
74	Ets transcription factors: nuclear effectors of the Ras–MAP-kinase signaling pathway. Trends in Biochemical Sciences, 1998, 23, 213-216.	3.7	473
75	Regulation of gene expression at early stages of B-cell and T-cell differentation. Current Opinion in Immunology, 1996, 8, 166-174.	2.4	22
76	Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter Genes and Development, 1996, 10, 2198-2211.	2.7	215
77	Rescue of thymocytes from glucocorticoid-induced cell death mediated by CD28/CTLA-4 costimulatory interactions with B7-1/B7-2 Journal of Experimental Medicine, 1996, 184, 1631-1638.	4.2	64
78	EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains EMBO Journal, 1995, 14, 2907-2916.	3.5	123
79	EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO Journal, 1995, 14, 2907-16.	3.5	58
80	Regulation of gene expression at early stages of B-cell differentiation. Current Opinion in Immunology, 1994, 6, 222-230.	2.4	56
81	Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression Genes and Development, 1993, 7, 760-773.	2.7	237
82	Purification of early-B-cell factor and characterization of its DNA-binding specificity Molecular and Cellular Biology, 1993, 13, 3392-3400.	1.1	85
83	Purification of early-B-cell factor and characterization of its DNA-binding specificity. Molecular and Cellular Biology, 1993, 13, 3392-3400.	1.1	33
84	Clonal deletion of V beta 5+ T cells by transgenic I-E restricted to thymic medullary epithelium. Journal of Immunology, 1993, 151, 3954-60.	0.4	56
85	An inhibitory carboxyl-terminal domain in Ets-1 and Ets-2 mediates differential binding of ETS family factors to promoter sequences of the mb-1 gene Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8889-8893.	3.3	149
86	Heterogeneously initiated transcription from the pre-B- and B-cell-specific mb-1 promoter: analysis of the requirement for upstream factor-binding sites and initiation site sequences Molecular and Cellular Biology, 1991, 11, 5756-5766.	1.1	84
87	A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation EMBO Journal, 1991, 10, 3409-3417.	3.5	132
88	Heterogeneously Initiated Transcription from the Pre-B- and B-Cell-Specific <i>mb-1</i> Promoter: Analysis of the Requirement for Upstream Factor-Binding Sites and Initiation Site Sequences. Molecular and Cellular Biology, 1991, 11, 5756-5766.	1.1	35
89	A novel lineage-specific nuclear factor regulates mb-1 gene transcription at the early stages of B cell differentiation. EMBO Journal, 1991, 10, 3409-17.	3.5	61
90	A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B Genes and Development, 1990, 4, 978-992.	2.7	102

#	Article	IF	CITATIONS
91	Inhibition of immunoglobulin gene rearrangement by the expression of a lambda 2 transgene Journal of Experimental Medicine, 1989, 169, 1911-1929.	4.2	47
92	Control of Expression of Immunoglobulin Genes. , 1989, , 316-323.		4
93	Cloning of a gamma 2b gene encoding anti-Pseudomonas aeruginosa H chains and its introduction into the germ line of mice. Journal of Immunology, 1988, 141, 308-14.	0.4	14
94	Ig lambda-producing B cells do not show feedback inhibition of gene rearrangement. Journal of Immunology, 1988, 141, 2771-80.	0.4	44
95	Characterization of Adrenocorticotropin Receptors that Appear when 3T3-L1 Cells Differentiate into Adipocytes*. Endocrinology, 1985, 116, 113-117.	1.4	39
96	Human leukocyte interferon has no structural or biological relationship to corticotropin. Biochemical and Biophysical Research Communications, 1982, 104, 944-949.	1.0	5
97	Synthesis of human corticotropinylâ€ŧhiolglycine and its specific conjugation to bovine serum albumin. International Journal of Peptide and Protein Research, 1982, 20, 97-101.	0.1	5
98	A Sensitive Radioimmunoassay for Corticotropin Using a Fully Biologically Active ¹²⁵ I-Labeled Ligand*. Endocrinology, 1981, 109, 10-16.	1.4	47
99	Persistent activation of steroidogenesis in adrenocortical cells by photoaffinity labeling of corticotropin receptors. Journal of Biological Chemistry, 1981, 256, 11424-7.	1.6	18