
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Buchwaldâ€Hartwig Amination of Coordinating Heterocycles Enabled by Largeâ€butâ€Flexible Pdâ€BIANâ€NHC Catalysts**. Chemistry - A European Journal, 2022, 28, .	1.7	16
2	pH determination of small sample volumes using Raman spectra of azo dyes. Journal of Molecular Structure, 2022, 1253, 132226.	1.8	2
3	Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides. ACS Catalysis, 2022, 12, 2426-2433.	5.5	23
4	N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics, 2022, 41, 1806-1815.	1.1	12
5	Application of Indazolin-3-ylidenes in Catalysis: Steric Tuning of Nonclassical Formally Normal <i>N</i> -Heterocyclic Carbenes with Dual Electronic Character for Catalysis. Organometallics, 2022, 41, 1115-1124.	1.1	11
6	Thiazol-2-ylidenes as N-Heterocyclic carbene ligands with enhanced electrophilicity for transition metal catalysis. Communications Chemistry, 2022, 5, .	2.0	17
7	ATR-IR Spectroscopy Application to Diagnostic Screening of Advanced Endometriosis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	1.9	2
8	Quantification of Salicylates and Flavonoids in Poplar Bark and Leaves Based on IR, NIR, and Raman Spectra. Molecules, 2022, 27, 3954.	1.7	4
9	Structures of the Most Twisted Thioamide and Selenoamide: Effect of Higher Chalcogens of Twisted Amides on Nâ^'C(X) Resonance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
10	Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using Sml ₂ and D ₂ O. Chemical Communications, 2021, 57, 5195-5198.	2.2	11
11	IPr# – highly hindered, broadly applicable N-heterocyclic carbenes. Chemical Science, 2021, 12, 10583-10589.	3.7	51
12	Conversion of esters to thioesters under mild conditions. Organic and Biomolecular Chemistry, 2021, 19, 2991-2996.	1.5	13
13	Modeling of Antioxidant Activity, Polyphenols and Macronutrients Content of Bee Pollen Applying Solid-State 13C NMR Spectra. Antioxidants, 2021, 10, 1123.	2.2	4
14	Evaluation of Cyclic Amides as Activating Groups in N–C Bond Cross-Coupling: Discovery of <i>N</i> -Acyl-Î -valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 10455-10466.	1.7	12
15	Quantitative Determination of Vitamins A and E in Ointments Using Raman Spectroscopy. Processes, 2021, 9, 8.	1.3	6
16	[(NHC)PdCl ₂ (Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 15648-15657.	1.7	35
17	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α,α-Dideuterio Alcohols Using SmI ₂ and D ₂ O as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	2.4	20
18	Ring-Opening Olefin Metathesis of Twisted Amides: Activation of Amide Bonds by Câ∙€ Cleavage. ACS Catalysis, 2020, 10, 737-742.	5.5	9

#	Article	IF	CITATIONS
19	Electrophilicity Scale of Activated Amides: 17 Oâ€NMR and 15 Nâ€NMR Chemical Shifts of Acyclic Twisted Amides in Nâ^'C(O) Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 16246-16250.	1.7	13
20	Preference of <i>cis</i> -Thioamide Structure in <i>N</i> -Thioacyl- <i>N</i> -methylanilines. Organic Letters, 2020, 22, 9500-9505.	2.4	12
21	N-Acylcarbazoles and N-Acylindoles: Electronically Activated Amides for N–C(O) Cross-Coupling by Nlp to Ar Conjugation Switch. Organic Letters, 2020, 22, 4703-4709.	2.4	23
22	<i>N</i> -Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 5475-5485.	1.7	21
23	Quantification of Ash and Moisture in Wheat Flour by Raman Spectroscopy. Foods, 2020, 9, 280.	1.9	31
24	Determination of nutritional parameters of bee pollen by Raman and infrared spectroscopy. Talanta, 2020, 212, 120790.	2.9	22
25	Sterically Hindered Ketones via Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. Organic Letters, 2019, 21, 7976-7981.	2.4	27
26	Polypyrrole–Methyl Orange Raman pH Sensor. Polymers, 2019, 11, 715.	2.0	13
27	¹⁷ 0 NMR and ¹⁵ N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chemical Communications, 2019, 55, 4423-4426.	2.2	12
28	Triflamides: Highly Reactive, Electronically Activated <i>N</i> -Sulfonyl Amides in Catalytic N–C(O) Amide Cross-Coupling. Organic Letters, 2019, 21, 1253-1257.	2.4	32
29	Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude. Journal of Organic Chemistry, 2019, 84, 1510-1516.	1.7	16
30	Chemistry of Bridged Lactams: Recent Developments. Molecules, 2019, 24, 274.	1.7	43
31	Determination of nutritional parameters of yoghurts by FT Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 413-417.	2.0	9
32	<i>N</i> -Acyl-glutarimides: Resonance and Proton Affinities of Rotationally-Inverted Twisted Amides Relevant to N–C(O) Cross-Coupling. Organic Letters, 2018, 20, 1342-1345.	2.4	65
33	Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 88-94.	2.0	20
34	Barriers to Rotation in ortho-Substituted Tertiary Aromatic Amides: Effect of Chloro-Substitution on Resonance and Distortion. Journal of Organic Chemistry, 2018, 83, 3159-3163.	1.7	29
35	Determining moisture content in pasta by vibrational spectroscopy. Talanta, 2018, 178, 294-298.	2.9	15
36	Reversible Twisting of Primary Amides via Ground State N–C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides. Journal of the American Chemical Society, 2018, 140, 727-734.	6.6	155

#	Article	IF	CITATIONS
37	Microheterogeneity in CH3OH/CD3OH mixture. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 349-354.	2.0	11
38	Electrocrystallization of silver nanoparticles from silver halides in polypyrrole evidenced by their SERS activity—thermodynamic and kinetic conditions. Journal of Solid State Electrochemistry, 2018, 22, 3933-3945.	1.2	2
39	The Most Twisted Acyclic Amides: Structures and Reactivity. Organic Letters, 2018, 20, 7771-7774.	2.4	41
40	Twisted <i>N</i> -Acyl-hydantoins: Rotationally Inverted Urea-Imides of Relevance in N–C(O) Cross-coupling. Journal of Organic Chemistry, 2018, 83, 14676-14682.	1.7	13
41	Structures and energetic properties of 4-halobenzamides. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1395-1402.	0.2	1
42	Quantification of active ingredients in Potentilla tormentilla by Raman and infrared spectroscopy. Talanta, 2018, 189, 308-314.	2.9	21
43	Acyl and Decarbonylative Suzuki Coupling of <i>N</i> -Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. ACS Catalysis, 2018, 8, 9131-9139.	5.5	91
44	Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of N-Mesylamides by N–C Cleavage: Electronic Effect of the Mesyl Group. Organic Letters, 2017, 19, 1434-1437.	2.4	74
45	Suzuki–Miyaura Cross-Coupling of <i>N</i> -Acylpyrroles and Pyrazoles: Planar, Electronically Activated Amides in Catalytic N–C Cleavage. Organic Letters, 2017, 19, 3596-3599.	2.4	91
46	Resonance Destabilization in <i>N</i> -Acylanilines (Anilides): Electronically-Activated Planar Amides of Relevance in N–C(O) Cross-Coupling. Journal of Organic Chemistry, 2017, 82, 6373-6378.	1.7	82
47	<i>N</i> -Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N–C(O) Cleavage. Organic Letters, 2017, 19, 4656-4659.	2.4	59
48	Suzuki–Miyaura cross-coupling of amides and esters at room temperature: correlation with barriers to rotation around C–N and C–O bonds. Chemical Science, 2017, 8, 6525-6530.	3.7	148
49	Determination of Antioxidant Activity and Polyphenols Content in Chips by Raman and IR Spectroscopy. Food Analytical Methods, 2017, 10, 3964-3971.	1.3	8
50	Quantification of active ingredients in pharmaceutical suspensions by FT Raman spectroscopy. Vibrational Spectroscopy, 2017, 93, 57-64.	1.2	8
51	Silver(I) chloride-polypyrrole composite: electrochemical preparation, characterization, and application as a SERS platform. Journal of Solid State Electrochemistry, 2017, 21, 823-832.	1.2	3
52	Quantification of gluten in wheat flour by FT-Raman spectroscopy. Food Chemistry, 2016, 211, 560-563.	4.2	27
53	Microheterogeneity in binary mixtures of methanol with aliphatic alcohols: ATR-IR/NIR spectroscopic, chemometrics and DFT studies. RSC Advances, 2016, 6, 37195-37202.	1.7	30
54	Quantitative analysis of solid samples using modified specular reflectance accessory. Talanta, 2016, 161, 655-659.	2.9	3

#	Article	IF	CITATIONS
55	Proton-coupled electron transfer in the reduction of carbonyls using Sml ₂ –H ₂ 0: implications for the reductive coupling of acyl-type ketyl radicals with Sml ₂ –H ₂ 0. Organic and Biomolecular Chemistry, 2016, 14, 9151-9157.	1.5	19
56	Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N–C Cross-Coupling. Journal of Organic Chemistry, 2016, 81, 8091-8094.	1.7	121
57	<i>N</i> -Acylsaccharins: Stable Electrophilic Amide-Based Acyl Transfer Reagents in Pd-Catalyzed Suzuki–Miyaura Coupling via N–C Cleavage. Organic Letters, 2016, 18, 4194-4197.	2.4	103
58	Structures of Highly Twisted Amides Relevant to Amide Nâ^'C Crossâ€Coupling: Evidence for Groundâ€State Amide Destabilization. Chemistry - A European Journal, 2016, 22, 14494-14498.	1.7	94
59	Highly Chemoselective Synthesis of Indolizidine Lactams by SmI ₂ â€Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds. Chemistry - A European Journal, 2016, 22, 11949-11953.	1.7	33
60	Modeling red coral (<i>Corallium rubrum</i>) and African snail (<i>Helixia aspersa</i>) shell pigments: Raman spectroscopy <i>versus</i> DFT studies. Journal of Raman Spectroscopy, 2016, 47, 908-916.	1.2	10
61	Application of infrared reflection and Raman spectroscopy for quantitative determination of fat in potato chips. Journal of Molecular Structure, 2016, 1126, 213-218.	1.8	22
62	Quantitative analysis of topical gels and ointments by FT-Raman spectroscopy. Vibrational Spectroscopy, 2016, 83, 1-7.	1.2	16
63	An efficient computational model to predict protonation at the amide nitrogen and reactivity along the C–N rotational pathway. Chemical Communications, 2015, 51, 6395-6398.	2.2	79
64	Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C–N Rotational Pathway. Journal of Organic Chemistry, 2015, 80, 7905-7927.	1.7	59
65	Analysis of milk by FT-Raman spectroscopy. Talanta, 2015, 138, 285-289.	2.9	51
66	Quantification of active ingredients in suppositories by FTâ€Raman spectroscopy. Drug Testing and Analysis, 2013, 5, 126-129.	1.6	12
67	Quantitative Determination of Prednisone in Tablets by Infrared Attenuated Total Reflection and Raman Spectroscopy. Journal of AOAC INTERNATIONAL, 2012, 95, 744-750.	0.7	10
68	Quantitative analysis of thiamine hydrochloride in tablets—Comparison of infrared attenuated total reflection, diffuse reflectance infrared and Raman spectroscopy. Vibrational Spectroscopy, 2012, 62, 10-16.	1.2	10
69	The influence of sample area on diclofenac sodium quantification by diffuse reflectance IR spectroscopy. Talanta, 2011, 84, 583-586.	2.9	11
70	Chemometric Detection of Acetaminophen in Pharmaceuticals by Infrared Spectroscopy Combined with Pattern Recognition Techniques: Comparison of Attenuated Total Reflectance-FTIR and Raman Spectroscopy. Journal of AOAC INTERNATIONAL, 2011, 94, 743-749.	0.7	5
71	Comparison of infrared attenuated total reflection and Raman spectroscopy in the quantitative analysis of diclofenac sodium in tablets. Vibrational Spectroscopy, 2011, 57, 157-157.	1.2	10
72	On the blue-shifting hydrogen bond in tribromoacetaldehyde dimers. Chemical Physics Letters, 2011, 514, 49-53.	1.2	2

#	Article	IF	CITATIONS
73	Blue or red ΔÎ1⁄2XH complexation shift in X–Hâ∢⊂CO2 hydrogen-bonded complexes?. Chemical Physics Letters, 2011, 516, 166-170.	1.2	8
74	Why the Δμ2 _{CH} blue shift is larger in chloral than in dichloroacetyl chloride dimers?. Journal of Raman Spectroscopy, 2011, 42, 1185-1192.	1.2	5
75	Quantification of aspartame in commercial sweeteners by FT-Raman spectroscopy. Food Chemistry, 2011, 125, 1051-1057.	4.2	37
76	CXâ‹â‹ô Halogen Bonding: Interactions of Trifluoromethyl Halides with Dimethyl Ether. ChemPhysChem, 2009, 10, 2105-2115.	1.0	66
77	Quantification of atorvastatin calcium in tablets by FT-Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 168-172.	1.4	40
78	Simple transformation of spectra to effectively reduce quantification errors in FT-Raman multivariate analysis of complex systems. Vibrational Spectroscopy, 2009, 49, 298-302.	1.2	7
79	Quantitative determination of diclofenac sodium in solid dosage forms by FT-Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 814-821.	1.4	45
80	Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study. Chemical Physics, 2007, 333, 37-48.	0.9	71
81	Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 1225-1230.	1.4	96
82	Quantitative determination of diclofenac sodium and aminophylline in injection solutions by FT-Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 1235-1242.	1.4	67
83	Redox switching hysteresis in polyaniline–acetate systems: a search of molecular factors important for the dynamics of the polymer reaction. Journal of Electroanalytical Chemistry, 2004, 571, 51-57.	1.9	10
84	FT-Raman quantitative determination of ambroxol in tablets. Journal of Molecular Structure, 2004, 704, 229-233.	1.8	39
85	A quantitative analysis of liquid hydrocarbon mixtures on the basis of FT-Raman spectra registered under unstable conditions. Journal of Molecular Structure, 2004, 704, 235-245.	1.8	11
86	Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopyElectronic Supplementary Information available. See http://www.rsc.org/suppdata/an/b1/b108240j/. Analyst, The, 2002, 127, 144-148.	1.7	134
87	The Nature of Improper, Blue-Shifting Hydrogen Bonding Verified Experimentally. Journal of the American Chemical Society, 2001, 123, 12290-12293.	6.6	306
88	On the HCl and DCl complexes of methylenecyclopropane in liquid argon. Physical Chemistry Chemical Physics, 2000, 2, 3983-3991.	1.3	8
89	Methylenecyclopropaneâ^Boron Trifluoride van der Waals Complexes; an Infrared and DFT Study. Journal of Physical Chemistry A, 2000, 104, 8480-8488.	1.1	12