
Hazi Mohammad Azamathulla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998536/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivariate modeling of agricultural river water abstraction via novel integrated-wavelet methods in various climatic conditions. Environment, Development and Sustainability, 2022, 24, 4845-4871.	5.0	10
2	Mathematical simulation of air-water flow along Ski Jump Jet. Water Science and Technology: Water Supply, 2022, 22, 2093-2105.	2.1	0
3	Hydraulic transients for a pipe line network of treated effluent rising main using SAP 2R. Water Science and Technology: Water Supply, 2022, 22, 1293-1305.	2.1	0

4 Development of a new wavelet-based hybrid model to forecast multi-scalar SPEI drought index (case) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

5	Assessment of groundwater quality and human health risk associated with chromium exposure in the industrial area of Ranipet, Tamil Nadu, India. Journal of Water Sanitation and Hygiene for Development, 2022, 12, 58-67.	1.8	17
6	Partitioning strategy for investigating the prediction capability of bed load transport under varied hydraulic conditions: Application of robust GWO-kernel-based ELM approach. Flow Measurement and Instrumentation, 2022, 84, 102136.	2.0	6
7	Comparing Combined 1D/2D and 2D Hydraulic Simulations Using High-Resolution Topographic Data: Examples from Sri Lanka—Lower Kelani River Basin. Hydrology, 2022, 9, 39.	3.0	10
8	Evaluation of Future Streamflow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology, 2022, 9, 48.	3.0	14
9	Prediction of Manning's coefficient of roughness for high-gradient streams using M5P. Water Science and Technology: Water Supply, 2022, 22, 2707-2720.	2.1	6
10	A Simplified Mathematical Formulation for Water Quality Index (WQI): A Case Study in the Kelani River Basin, Sri Lanka. Fluids, 2022, 7, 147.	1.7	10
11	Interpretation of Machine-Learning-Based (Black-box) Wind Pressure Predictions for Low-Rise Gable-Roofed Buildings Using Shapley Additive Explanations (SHAP). Buildings, 2022, 12, 734.	3.1	18
12	Influence of Crumb Rubber and Coconut Coir on Strength and Durability Characteristics of Interlocking Paving Blocks. Buildings, 2022, 12, 1001.	3.1	5
13	Scour at bridge piers in uniform and armored beds under steady and unsteady flow conditions using ANN-APSO and ANN-GA algorithms. ISH Journal of Hydraulic Engineering, 2021, 27, 220-228.	2.1	8
14	A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations. Water Science and Technology: Water Supply, 2021, 21, 3080-3098.	2.1	12
15	The Role of Place of Delivery in Preventing Neonatal and Infant Mortality Rate in India. Geographies, 2021, 1, 47-62.	1.5	5
16	Discussion of "Gene-Expression Programming, Evolutionary Polynomial Regression, and Model Tree to Evaluate Local Scour Depth at Culvert Outlets―by Mohammad Najafzadeh and Ali Reza Kargar. Journal of Pipeline Systems Engineering and Practice, 2021, 12, 07021001.	1.6	12
17	Towards design of compound channels with minimum overall cost through grey wolf optimization algorithm. Journal of Hydroinformatics, 2021, 23, 985-999.	2.4	10
18	Physical and numerical modeling of performance of detention dams. Journal of Hydrology, 2020, 581, 121757.	5.4	26

#	Article	IF	CITATIONS
19	Reduction of time-dependent scour around piers using collars. Ocean Engineering, 2020, 213, 107692.	4.3	44
20	Classification of Hydraulic Jump in Rough Beds. Water (Switzerland), 2020, 12, 2249.	2.7	15
21	Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Science and Technology: Water Supply, 2020, 20, 1988-1998.	2.1	25
22	Control of bed scour downstream of ski-jump spillway by combination of six-legged concrete elements and riprap. Ain Shams Engineering Journal, 2020, 11, 1047-1059.	6.1	6
23	Efficiency of Trapezoidal Labyrinth Shaped stepped spillways. Flow Measurement and Instrumentation, 2020, 72, 101711.	2.0	47
24	Impact of climate variability on hydropower generation: A case study from Sri Lanka. ISH Journal of Hydraulic Engineering, 2020, 26, 301-309.	2.1	22
25	Bioengineering Materials for Environment Protection in a Changing Climate. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.8	0
26	Prediction of discharge coefficient of combined weir-gate using ANN, ANFIS and SVM. International Journal of Hydrology Science and Technology, 2019, 9, 412.	0.3	17
27	Assessment of Dam Overtopping Reliability using SUFI Based Overtopping Threshold Curve. Water Resources Management, 2018, 32, 2369-2383.	3.9	22
28	Prediction of discharge coefficient of cylindrical weir–gate using GMDH-PSO. ISH Journal of Hydraulic Engineering, 2018, 24, 116-123.	2.1	44
29	ANFIS-based PCA to predict the longitudinal dispersion coefficient in rivers. International Journal of Hydrology Science and Technology, 2018, 8, 410.	0.3	20
30	Assessment of Stochastic Approaches in Prediction of Wave-Induced Pipeline Scour Depth. Journal of Pipeline Systems Engineering and Practice, 2018, 9, .	1.6	44
31	Prediction of scour caused by 2D horizontal jets using soft computing techniques. Ain Shams Engineering Journal, 2017, 8, 559-570.	6.1	21
32	Effect of Extraordinary Large Floods on at-site Flood Frequency. Water Resources Management, 2017, 31, 4187-4205.	3.9	14
33	Prediction of head loss on cascade weir using ANN and SVM. ISH Journal of Hydraulic Engineering, 2017, 23, 102-110.	2.1	43
34	Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply, 2016, 16, 1002-1016.	2.1	100
35	GEP to predict characteristics of a hydraulic jump over a rough bed. KSCE Journal of Civil Engineering, 2016, 20, 3006-3011.	1.9	30
36	Neuro-Fuzzy GMDH to Predict the Scour Pile Groups due to Waves. Journal of Computing in Civil Engineering, 2015, 29, .	4.7	93

#	Article	IF	CITATIONS
37	Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks. Engineering Applications of Computational Fluid Mechanics, 2015, 9, 291-300.	3.1	43
38	Application of Google earth to investigate the change of flood inundation area due to flood detention dam. Earth Science Informatics, 2015, 8, 627-638.	3.2	28
39	Discussion: Bridge pier scour prediction by gene expression programming. Water Management, 2014, 167, 368-369.	1.2	3
40	Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Applications, 2014, 24, 413-420.	5.6	46
41	Prediction of soil erodibility factor for Peninsular Malaysia soil series using ANN. Neural Computing and Applications, 2014, 24, 383-389.	5.6	26
42	Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Computing and Applications, 2014, 24, 629-635.	5.6	58
43	Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Computing and Applications, 2014, 24, 357-366.	5.6	57
44	Development of GEP-based functional relationship for sediment transport in tropical rivers. Neural Computing and Applications, 2014, 24, 271-276.	5.6	38
45	Mathematical modeling of flow discharge over compound sharp-crested weirs. Journal of Hydro-Environment Research, 2014, 8, 194-199.	2.2	13
46	Scour below submerged skewed pipeline. Journal of Hydrology, 2014, 509, 615-620.	5.4	28
47	Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management, 2013, 11, 121-135.	2.7	35
48	Determination of optimum relaxation coefficient using finite difference method for groundwater flow. Arabian Journal of Geosciences, 2013, 6, 3409-3415.	1.3	7
49	Suspended sediment load prediction of river systems: GEP approach. Arabian Journal of Geosciences, 2013, 6, 3469-3480.	1.3	35
50	Soft computing for prediction of river pipeline scour depth. Neural Computing and Applications, 2013, 23, 2465-2469.	5.6	25
51	Group method of data handling to predict scour depth around bridge piers. Neural Computing and Applications, 2013, 23, 2107-2112.	5.6	56
52	Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Computing and Applications, 2013, 23, 1421-1426.	5.6	30
53	A practical approach to formulate stage–discharge relationship in natural rivers. Neural Computing and Applications, 2013, 23, 873-880.	5.6	9
54	An expert system for predicting Manning's roughness coefficient in open channels by using gene expression programming. Neural Computing and Applications, 2013, 23, 1343-1349.	5.6	38

#	Article	IF	CITATIONS
55	COMPUTATION OF DISCHARGE THROUGH SIDE SLUICE GATE USING GENEâ€EXPRESSION PROGRAMMING. Irrigation and Drainage, 2013, 62, 115-119.	1.7	10
56	Local scouring around L-head groynes. Journal of Hydrology, 2013, 504, 125-131.	5.4	32
57	Estimation of Critical Velocity for Slurry Transport through Pipeline Using Adaptive Neuro-Fuzzy Interference System and Gene-Expression Programming. Journal of Pipeline Systems Engineering and Practice, 2013, 4, 131-137.	1.6	20
58	Use of Gene-Expression Programming to Estimate Manning's Roughness Coefficient for High Gradient Streams. Water Resources Management, 2013, 27, 715-729.	3.9	51
59	GMDH to predict scour depth around a pier in cohesive soils. Applied Ocean Research, 2013, 40, 35-41.	4.1	87
60	Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. Journal of Hydrology, 2013, 480, 162-166.	5.4	18
61	Numerical modeling of 3-D flow on porous broad crested weirs. Applied Mathematical Modelling, 2013, 37, 9324-9337.	4.2	31
62	Prediction of equilibrium scour time around long abutments. Water Management, 2013, 166, 394-401.	1.2	10
63	Gene-expression programming to predict scour at a bridge abutment. Journal of Hydroinformatics, 2012, 14, 324-331.	2.4	39
64	3D-SIMULATION OF FLOW OVER SUBMERGED WEIRS. International Journal of Modelling and Simulation, 2012, 32, .	3.3	6
65	Gene-expression programming for flip-bucket spillway scour. Water Science and Technology, 2012, 65, 1982-1987.	2.5	37
66	Gene-expression programming to predict pier scour depth using laboratory data. Journal of Hydroinformatics, 2012, 14, 628-645.	2.4	46
67	Bridge pier scour prediction by gene expression programming. Water Management, 2012, 165, 481-493.	1.2	19
68	Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers. Journal of Earth System Science, 2012, 121, 125-133.	1.3	35
69	ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing Journal, 2012, 12, 1227-1230.	7.2	133
70	ANFIS-Based Approach for Predicting the Scour Depth at Culvert Outlets. Journal of Pipeline Systems Engineering and Practice, 2011, 2, 35-40.	1.6	60
71	Prediction of total bed material load for rivers in Malaysia: A case study of Langat, Muda and Kurau Rivers. Environmental Fluid Mechanics, 2011, 11, 307-318.	1.6	27
72	Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams. Water Resources Management, 2011, 25, 1537-1544.	3.9	103

#	Article	IF	CITATIONS
73	Gene-Expression Programming for the Development of a Stage-Discharge Curve of the Pahang River. Water Resources Management, 2011, 25, 2901-2916.	3.9	102
74	Flow pattern and hydraulic performance of the REDAC Gross Pollutant Trap. Flow Measurement and Instrumentation, 2011, 22, 215-224.	2.0	13
75	Support vector machine approach for longitudinal dispersion coefficients in natural streams. Applied Soft Computing Journal, 2011, 11, 2902-2905.	7.2	131
76	Predictive model-based for the critical submergence of horizontal intakes in open channel flows with different clearance bottoms using CART, ANN and linear regression approaches. Expert Systems With Applications, 2011, 38, 10114-10123.	7.6	25
77	Linear genetic programming to scour below submerged pipeline. Ocean Engineering, 2011, 38, 995-1000.	4.3	63
78	Gene-Expression Programming for Sediment Transport in Sewer Pipe Systems. Journal of Pipeline Systems Engineering and Practice, 2011, 2, 102-106.	1.6	83
79	ANFIS-based approach for the estimation of transverse mixing coefficient. Water Science and Technology, 2011, 63, 1004-1009.	2.5	21
80	Prediction of scour below submerged pipeline crossing a river using ANN. Water Science and Technology, 2011, 63, 2225-2230.	2.5	29
81	Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs, 2010, 20, 131-136.	0.2	9
82	Gene expression programming for total bed material load estimation—a case study. Science of the Total Environment, 2010, 408, 5078-5085.	8.0	59
83	Machine Learning Approach to Predict Sediment Load – A Case Study. Clean - Soil, Air, Water, 2010, 38, 969-976.	1.1	62
84	Genetic Programming to Predict River Pipeline Scour. Journal of Pipeline Systems Engineering and Practice, 2010, 1, 127-132.	1.6	57
85	Linear genetic programming for prediction of circular pile scour. Ocean Engineering, 2009, 36, 985-991.	4.3	80
86	An ANFIS-based approach for predicting the bed load for moderately sized rivers. Journal of Hydro-Environment Research, 2009, 3, 35-44.	2.2	79
87	Comparison between genetic algorithm and linear programming approach for real time operation. Journal of Hydro-Environment Research, 2008, 2, 172-181.	2.2	102
88	Estimation of scour below spillways using neural networks. Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 61-69.	1.7	66
89	SCOUR AT THE BASE OF FLIP-BUCKET SPILLWAYS. ISH Journal of Hydraulic Engineering, 2004, 10, 121-129.	2.1	6
90	Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes. Water Science and Technology: Water Supply, 0, , .	2.1	0