Yong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998327/publications.pdf

Version: 2024-02-01

163	10,219	57	94
papers	citations	h-index	g-index
198	198	198	5021
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Phosphine-triggered synthesis of functionalized cyclic compounds. Chemical Society Reviews, 2008, 37, 1140.	18.7	683
2	Ylide-Initiated Michael Additionâ^'Cyclization Reactions beyond Cyclopropanes. Accounts of Chemical Research, 2008, 41, 937-948.	7.6	367
3	Copper-Catalyzed Highly Enantioselective Cyclopentannulation of Indoles with Donor–Acceptor Cyclopropanes. Journal of the American Chemical Society, 2013, 135, 7851-7854.	6.6	330
4	Sidearm Effect: Improvement of the Enantiomeric Excess in the Asymmetric Michael Addition‡of Indoles to Alkylidene Malonates. Journal of the American Chemical Society, 2002, 124, 9030-9031.	6.6	270
5	Side Arm Strategy for Catalyst Design: Modifying Bisoxazolines for Remote Control of Enantioselection and Related. Accounts of Chemical Research, 2014, 47, 2260-2272.	7.6	213
6	Highly Enantioselective and Diastereoselective Cycloaddition of Cyclopropanes with Nitrones and Its Application in the Kinetic Resolution of 2-Substituted Cyclopropane-1,1-dicarboxylates. Angewandte Chemie - International Edition, 2007, 46, 3918-3921.	7.2	212
7	Enantioselective Synthesis of Vinylcyclopropanes and Vinylepoxides Mediated by Camphor-Derived Sulfur Ylides:Â Rationale of Enantioselectivity, Scope, and Limitation. Journal of the American Chemical Society, 2006, 128, 9730-9740.	6.6	181
8	Asymmetric Annulation of Donor–Acceptor Cyclopropanes with Dienes. Journal of the American Chemical Society, 2015, 137, 8006-8009.	6.6	179
9	Tridentate ligands and beyond in group IV metal \hat{l} ±-olefin homo-/co-polymerization catalysis. Chemical Society Reviews, 2012, 41, 4484.	18.7	170
10	Highly Enantioselective [3+3] Cycloaddition of Aromatic Azomethine Imines with Cyclopropanes Directed by π–Ĭ€ Stacking Interactions. Angewandte Chemie - International Edition, 2013, 52, 1452-1456.	7.2	170
11	Controllable Enantioselective Friedelâ^'Crafts Reaction1between Indoles and Alkylidene Malonates Catalyzed by Pseudo-C3-Symmetric Trisoxazoline Copper(II) Complexes. Journal of Organic Chemistry, 2004, 69, 1309-1320.	1.7	160
12	Side-Arm-Promoted Highly Enantioselective Ring-Opening Reactions and Kinetic Resolution of Donor–Acceptor Cyclopropanes with Amines. Journal of the American Chemical Society, 2012, 134, 9066-9069.	6.6	145
13	Iron Porphyrin-Catalyzed Olefination of Ketenes with Diazoacetate for the Enantioselective Synthesis of Allenes. Journal of the American Chemical Society, 2007, 129, 1494-1495.	6.6	140
14	[O ^{â^'} NS ^R]TiCl ₃ â€Catalyzed Copolymerization of Ethylene with Functionalized Olefins. Angewandte Chemie - International Edition, 2009, 48, 8099-8102.	7.2	139
15	Phosphine-Catalyzed Intramolecular Formal [3+2] Cycloaddition for Highly Diastereoselective Synthesis of Bicyclo[n.3.0] Compounds. Angewandte Chemie - International Edition, 2007, 46, 5951-5954.	7.2	133
16	The development and application of chiral trisoxazolines in asymmetric catalysis and molecular recognition. Chemical Society Reviews, 2005, 34, 664.	18.7	130
17	Highly Enantioselective [3+2] Annulation of Cyclic Enol Silyl Ethers with Donor–Acceptor Cyclopropanes: Accessing <i>3a</i> â€Hydroxy [<i>n</i> .3.0]Carbobicycles. Angewandte Chemie - International Edition, 2013, 52, 4004-4007.	7.2	130
18	Asymmetric Nazarov Reaction Catalyzed by Chiral Tris(oxazoline)/Copper(II). Angewandte Chemie - International Edition, 2010, 49, 4463-4466.	7.2	124

#	Article	IF	CITATIONS
19	A Novel Chiral Sulfonium Yilde:Â Highly Enantioselective Synthesis of Vinylcyclopropanes. Journal of the American Chemical Society, 2002, 124, 2432-2433.	6.6	122
20	Controllable Diastereoselective Cyclopropanation. Enantioselective Synthesis of Vinylcyclopropanes via Chiral Telluronium Ylides. Journal of the American Chemical Society, 2003, 125, 13030-13031.	6.6	120
21	Remote Ester Groups Switch Selectivity: Diastereodivergent Synthesis of Tetracyclic Spiroindolines. Journal of the American Chemical Society, 2014, 136, 6900-6903.	6.6	118
22	Scandium triflate catalyzed cycloaddition of imines with 1,1-cyclopropanediesters: efficient and diastereoselective synthesis of multisubstituted pyrrolidines. Organic and Biomolecular Chemistry, 2006, 4, 299-301.	1.5	109
23	Reaction of Donorâ€Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)â€6trychnine and the Total Synthesis of (±)â€Akuammicine. Angewandte Chemie - International Edition, 2017, 56, 3055-3058.	7.2	108
24	Trisoxazoline/Cu(II)-Promoted Kinugasa Reaction. Enantioselective Synthesis of \hat{l}^2 -Lactams. Journal of Organic Chemistry, 2006, 71, 3576-3582.	1.7	107
25	Synthesis and Characterization of Titanium(IV) Complexes Bearing Monoanionic [O-NX] (X = O, S, Se) Tridentate Ligands and Their Behaviors in Ethylene Homo- and Copolymerizaton with 1-Hexene. Organometallics, 2006, 25, 3259-3266.	1.1	104
26	Synthesis and Characterization of Novel Tridentate [NOP] Titanium Complexes and Their Application to Copolymerization and Polymerization of Ethylene. Organometallics, 2004, 23, 1684-1688.	1.1	102
27	Unexpected Tandem Ylide Annulation Reaction for Controllable Synthesis of 2H-Chromenes and 4H-Chromenes. Organic Letters, 2006, 8, 3853-3856.	2.4	102
28	Enantioselective Synthesis of 3aâ€Aminoâ€Pyrroloindolines by Copperâ€Catalyzed Direct Asymmetric Dearomative Amination of Tryptamines. Angewandte Chemie - International Edition, 2016, 55, 751-754.	7.2	102
29	An Organocatalytic Asymmetric Tandem Reaction for the Construction of Bicyclic Skeletons. Chemistry - A European Journal, 2009, 15, 11384-11389.	1.7	99
30	Enantioselective Friedel–Crafts reaction of indoles with arylidene malonates catalyzed byiPr-bisoxazoline–Cu(OTf)2. Chemical Communications, 2004, , 432-433.	2.2	97
31	Highly Diastereoselective and Enantioselective Formal $[4 + 1]$ Ylide Annulation for the Synthesis of Optically Active Dihydrofurans. Journal of Organic Chemistry, 2008, 73, 6909-6912.	1.7	96
32	A Chiral Cagelike Copper(I) Catalyst for the Highly Enantioselective Synthesis of 1,1 yclopropane Diesters. Angewandte Chemie - International Edition, 2012, 51, 11620-11623.	7.2	96
33	Tandem Michael Addition/Ylide Epoxidation for the Synthesis of Highly Functionalized Cyclohexadiene Epoxide Derivatives. Journal of the American Chemical Society, 2008, 130, 5408-5409.	6.6	94
34	Asymmetric H ₂ O-Nucleophilic Ring Opening of D–A Cyclopropanes: Catalyst Serves as a Source of Water. Journal of the American Chemical Society, 2015, 137, 14594-14597.	6.6	93
35	Asymmetric Ringâ€Opening Reactions of Donorâ€Acceptor Cyclopropanes and Cyclobutanes. Israel Journal of Chemistry, 2016, 56, 463-475.	1.0	93
36	Catalytic Asymmetric Intramolecular Cascade Reaction for the Construction of Functionalized Benzobicyclo [4.3.0] Skeletons. Remote Control of Enantioselectivity. Advanced Synthesis and Catalysis, 2010, 352, 1914-1919.	2.1	89

#	Article	IF	Citations
37	A Highly Efficient and Enantioselective Intramolecular Cannizzaro Reaction under TOX/Cu(II) Catalysis. Journal of the American Chemical Society, 2013, 135, 16849-16852.	6.6	89
38	Diastereoselectivity-Switchable and Highly Enantioselective $1,3$ -Dipolar Cycloaddition of Nitrones to Alkylidene Malonates. Organic Letters, 2004, 6, 1677-1679.	2.4	87
39	The Michael Additionâ^'Elimination of Ylides to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Imines. Highly Stereoselective Synthesis of Vinylcyclopropanecarbaldehydes and Vinylcyclopropylaziridines. Journal of the American Chemical Society, 2005, 127, 12222-12223.	6.6	86
40	Switchable Reactions of Cyclopropanes with Enol Silyl Ethers. Controllable Synthesis of Cyclopentanes and 1,6-Dicarbonyl Compounds. Journal of Organic Chemistry, 2009, 74, 7684-7689.	1.7	84
41	Enantioselective Construction of Cyclobutanes: A New and Concise Approach to the Total Synthesis of (+)-Piperarborenine B. Journal of the American Chemical Society, 2016, 138, 13151-13154.	6.6	83
42	Highly enantioselective synthesis of isoxazoline N-oxides. Chemical Communications, 2008, , 738-740.	2.2	80
43	Highly Enantioselective [3+2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines. Angewandte Chemie - International Edition, 2018, 57, 3810-3814.	7.2	80
44	Kinetic Resolution of Racemic Cyclic Olefins via Chiral Dioxirane. Journal of the American Chemical Society, 1999, 121, 7718-7719.	6.6	79
45	Copolymerization of Ethylene with Functionalized Olefins by [ONX] Titanium Complexes. Macromolecules, 2013, 46, 2870-2875.	2.2	79
46	Chiral tris(oxazoline)/Cu(ii) catalyzed coupling of terminal alkynes and nitronesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b306653c/. Chemical Communications, 2003, , 2554.	2.2	78
47	Structural Probing of Ketone Catalysts for Asymmetric Epoxidation. Journal of Organic Chemistry, 1998, 63, 8475-8485.	1.7	77
48	Highly Diastereo―and Enantioselective Cyclopropanation of 1,2â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2012, 51, 8838-8841.	7.2	77
49	Highly Diastereoselective and Enantioselective Formal [4 + 3] Cycloaddition of Donor–Acceptor Cyclobutanes with Nitrones. Organic Letters, 2015, 17, 2680-2683.	2.4	77
50	Enantioselectively Organocatalytic Michael Addition of Ketones to Alkylidene Malonates. Journal of Organic Chemistry, 2007, 72, 4073-4076.	1.7	74
51	Highly Diastereoselective Construction of Fused Carbocycles from Cyclopropaneâ€1,1â€dicarboxylates and Cyclic Enol Silyl Ethers: Scope, Mechanism, and Origin of Diastereoselectivity. Chemistry - A European Journal, 2012, 18, 2196-2201.	1.7	74
52	One-Pot Catalytic Asymmetric Synthesis of Tetrahydrocarbazoles. Organic Letters, 2015, 17, 4014-4017.	2.4	73
53	Telluronium and Sulfonium Ylides for Organic Transformation. Synlett, 2005, 2005, 2720-2730.	1.0	70
54	Enantioselective Synthesis of Chiral-at-Cage <i>>o</i> -Carboranes via Pd-Catalyzed Asymmetric B–H Substitution. Journal of the American Chemical Society, 2018, 140, 4508-4511.	6.6	67

#	Article	IF	CITATIONS
55	One-Pot Highly Diastereoselective Synthesis of <i>cis</i> -Vinylaziridines via the Sulfur Ylide-Mediated Aziridination and Palladium(0)-Catalyzed Isomerization. Organic Letters, 2010, 12, 504-507.	2.4	65
56	Pseudo-C3-symmetric trisoxazolines as ligands in copper catalyzed enantioselective Diels–Alder reaction. Organic and Biomolecular Chemistry, 2004, 2, 429-433.	1.5	64
57	Tunable Carbonyl Ylide Reactions: Selective Synthesis of Dihydrofurans and Dihydrobenzoxepines. Angewandte Chemie - International Edition, 2011, 50, 7874-7878.	7.2	59
58	Sidearm effects in the enantioselective cyclopropanation of alkenes with aryldiazoacetates catalyzed by trisoxazoline/Cu(i). Chemical Communications, 2007, , 1960.	2.2	57
59	Highly Selective Ylide-Initiated Michael Addition/Cyclization Reaction for Synthesis of Cyclohexadiene Epoxide and Vinylcyclopropane Derivatives. Journal of Organic Chemistry, 2010, 75, 3454-3457.	1.7	57
60	Highly Enantioselective Synthesis of Multifunctionalized Dihydrofurans by Copper-Catalyzed Asymmetric [4 + 1] Cycloadditions of \hat{l}_{\pm} -Benzylidene- \hat{l}^{2} -ketoester with Diazo Compound. ACS Catalysis, 2013, 3, 685-688.	5.5	57
61	Novel Titanium Catalysts Bearing an [O, N, S] Tridentate Ligand for Ethylene Homo- and Copolymerization. Macromolecular Rapid Communications, 2005, 26, 1609-1614.	2.0	55
62	Synthesis and Characterization of Pyrrole-imine [N ^{â^'} NP] Nickel(II) and Palladium(II) Complexes and Their Applications to Norbornene Polymerization. Organometallics, 2008, 27, 1924-1928.	1.1	55
63	Modular Synthesis of Chiral Homo- and Heterotrisoxazolines. Improving the Enantioselectivity in the Asymmetric Michael Addition of Indole to Benzylidene Malonate. Journal of Organic Chemistry, 2005, 70, 6108-6110.	1.7	54
64	Tetrahydrothiophene-Catalyzed Synthesis of Benzo[n.1.0] Bicycloalkanes. Journal of Organic Chemistry, 2007, 72, 1335-1340.	1.7	54
65	Ligandâ€Accelerated Asymmetric [1,2]â€Stevens Rearrangment of Sulfur Ylides <i>via</i> Decomposition of Diazomalonates Catalyzed by Chiral Bisoxazoline/Copper Complex. Advanced Synthesis and Catalysis, 2009, 351, 308-312.	2.1	52
66	Synergetic Tandem Enantiomeric Enrichment in Catalytic Asymmetric Multi-Component Reactions (AMCRs): Highly Enantioselective Construction of Tetracyclic Indolines with Four Continuous Stereocenters. ACS Catalysis, 2018, 8, 4991-4995.	5.5	52
67	Ethyleneâ€Norbornene Copolymerization by New Titanium Complexes Bearing Tridentate Ligands. Sidearm Effects on Catalytic Activity. Macromolecular Rapid Communications, 2007, 28, 1511-1516.	2.0	51
68	Synthetic applications of organotelluronium salts. Tetrahedron, 1998, 54, 1667-1690.	1.0	50
69	Highly Efficient Formal [2+2+2] Strategy for the Rapid Construction of Polycyclic Spiroindolines: A Concise Synthesis of 11â€Demethoxyâ€16â€ <i>epi</i> i>a€myrtoidine. Angewandte Chemie - International Edition, 2016, 55, 9224-9228.	7.2	50
70	Telluronium Salts Mediated Aziridination of ChiralN-tert-Butylsulfinylimines:  Highly Stereoselective Synthesis of Optically Active Vinylaziridines. Organic Letters, 2005, 7, 5789-5792.	2.4	48
71	Cyâ€SaBOX/Copper(II)â€Catalyzed Highly Diastereo―and Enantioselective Synthesis of Bicyclic N,Oâ€Acetals. Angewandte Chemie - International Edition, 2016, 55, 9220-9223.	7.2	48
72	PPh3-catalyzed ylide cyclization for the controllable synthesis of benzobicyclo [4.3.0] compounds: base effects and scope. Tetrahedron, 2008, 64, 1487-1493.	1.0	46

#	Article	IF	CITATIONS
73	Sidearm Approach:Â A Promising Strategy for Construction of Bisoxazoline-Based Ligand Library. ACS Combinatorial Science, 2004, 6, 301-304.	3.3	42
74	Asymmetric 1,2-Perfluoroalkyl Migration: Easy Access to Enantioenriched \hat{l}_{\pm} -Hydroxy- \hat{l}_{\pm} -perfluoroalkyl Esters. Journal of the American Chemical Society, 2015, 137, 4626-4629.	6.6	42
75	Direct copolymerization of ethylene with protic comonomers enabled by multinuclear Ni catalysts. Nature Communications, 2021, 12, 6283.	5.8	41
76	Reaction of Allylic Phosphoranes with Iron Porphyrin Carbenoids: Efficient, Selective, and Catalytic Intermolecular Formal Carbenoid Insertion into Olefinic Câ^'H Bonds. Journal of the American Chemical Society, 2009, 131, 4192-4193.	6.6	40
77	A practical catalytic Wittig-type reaction. Chemical Communications, 2001, , 1384-1385.	2.2	39
78	Asymmetric tandem Michael addition–ylide olefination reaction for the synthesis of optically active cyclohexa-1,3-diene derivatives. Chemical Communications, 2009, , 3092.	2.2	39
79	Intramolecular Hydroamination of Aminoalkenes Catalyzed by a Cationic Zirconium Complex. Organic Letters, 2011, 13, 4758-4761.	2.4	38
80	Tris(oxazoline)/copper-catalyzed coupling of alkynes with nitrones: a highly enantioselective access to \hat{l}^2 -lactams. Tetrahedron, 2012, 68, 5042-5045.	1.0	38
81	Synthesis, characterization, and catalytic behaviours of \hat{l}^2 -carbonylenamine-derived [Oâ^'NS]TiCl3 complexes in ethylene homo- and copolymerization. Dalton Transactions, 2009, , 8945.	1.6	37
82	Catalytic Intramolecular Formal [3 + 2] Cycloaddition for the Synthesis of Benzobicyclo [4.3.0] Compounds. Journal of Organic Chemistry, 2009, 74, 3394-3397.	1.7	35
83	Enantioselective synthesis of allenic esters via an ylide route. Chemical Communications, 2006, , 2980.	2.2	34
84	Efficient catalytic enantioselective Nazarov cyclizations of divinyl ketoesters. Organic Chemistry Frontiers, 2015, 2, 811-814.	2.3	34
85	One-Pot Screening of Titanium Catalysts for Ethylene Polymerization. Organometallics, 2008, 27, 4618-4624.	1.1	33
86	Multistep One-Pot Wittig/Nazarov Reaction for Construction of Cyclopentenone with Diazo Compounds and Acid Chlorides. Organic Letters, 2009, 11, 3048-3051.	2.4	31
87	Reaction of Donorâ€Acceptor Cyclobutanes with Indoles: A General Protocol for the Formal Total Synthesis of (±)â€Strychnine and the Total Synthesis of (±)â€Akuammicine. Angewandte Chemie, 2017, 129, 3101-3104.	1.6	31
88	A facile reaction of imines with telluronium allylide. Highly stereoselective synthesis of vinylaziridinesElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b400464g/. Chemical Communications, 2004, , 1516.	2.2	30
89	Cu(OTf)2/trisoxazoline catalyzed asymmetric Friedel–Crafts reaction of pyrroles with alkylidene malonates. Tetrahedron, 2008, 64, 10676-10680.	1.0	30
90	Catalytic Asymmetric Synthesis of 3-Hydroxy-3-trifluoromethyl Benzofuranones via Tandem Friedel–Crafts/Lactonization Reaction. Organic Letters, 2015, 17, 4886-4889.	2.4	30

#	Article	IF	CITATIONS
91	Access to Hexahydrocarbazoles: The Thorpe–Ingold Effects of the Ligand on Enantioselectivity. Angewandte Chemie - International Edition, 2017, 56, 6942-6945.	7.2	30
92	Copolymerization of ethylene with cycloolefins by titanium complexes containing tridentate [o ^{â^²} NS ^R] ligands. Journal of Polymer Science Part A, 2008, 46, 2807-2819.	2.5	29
93	SaBOX/Copper Catalysts for Highly Syndio-Specific Atom Transfer Radical Polymerization of Methyl Methacrylate. ACS Catalysis, 2017, 7, 4692-4696.	5.5	29
94	Olefination of ketenes for the enantioselective synthesis of allenes via an ylide route. Tetrahedron, 2007, 63, 8046-8053.	1.0	28
95	Ethylene homopolymerization and copolymerization with α-olefins catalyzed by titanium complexes bearing [Oâ°NSR] tridentate ligands. Journal of Molecular Catalysis A, 2008, 292, 62-66.	4.8	28
96	Copper(I)/SaBOX catalyzed highly diastereo- and enantio-selective cyclopropanation of cis -1,2-disubstituted olefins with α-nitrodiazoacetates. Science Bulletin, 2015, 60, 210-215.	4.3	28
97	Sidearm Modified Bisoxazoline Ligands and Their Applications. Chinese Journal of Chemistry, 2018, 36, 1123-1129.	2.6	28
98	A facile tetrahydrothiophene-catalyzed ylide route to vinyloxiranesElectronic supplementary information (ESI) available: preparation of vinyloxiranes and chiral catalysts. See http://www.rsc.org/suppdata/cc/b3/b304443b/. Chemical Communications, 2003, , 2074.	2.2	26
99	Application of Asymmetric Ylide Cyclopropanation in the Total Synthesis of Halicholactone. Chemistry - A European Journal, 2009, 15, 11465-11468.	1.7	24
100	Highly Enantioselective [3+2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines. Angewandte Chemie, 2018, 130, 3872-3876.	1.6	24
101	Copper Catalyzed Asymmetric [4 + 2] Annulations of Dâ€A Cyclobutanes with Aldehydes. Chinese Journal of Chemistry, 2018, 36, 47-50.	2.6	24
102	Selectivity Switch in a Rhodium(II) Carbene Triggered Cyclopentannulation: Divergent Access to Three Polycyclic Indolines. Angewandte Chemie - International Edition, 2019, 58, 4345-4349.	7.2	24
103	A Versatile Enantioselective Catalytic Cyclopropanationâ€Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angewandte Chemie - International Edition, 2020, 59, 18964-18969.	7.2	24
104	Ylide Hydrolysis in Tandem Reactions: A Highly $\langle i \rangle Z \langle i \rangle / \langle i \rangle E \langle i \rangle$ -Selective Access to 3-Alkylidene Dihydrobenzofurans and Related Analogues. Organic Letters, 2013, 15, 3054-3057.	2.4	23
105	Asymmetric hydroamination catalyzed by a new chiral zirconium system: reaction scope and mechanism. Chemical Communications, 2015, 51, 5751-5753.	2.2	23
106	Catalyst-Controlled Chemoselective All-Alkene $[2+2+2]$ and $[2+2]$ Cyclizations of Enamides with Electron-Deficient Alkenes. Organic Letters, 2019, 21, 1458-1462.	2.4	23
107	Reaction of trisubstituted alkenes with iron porphyrin carbenes: facile synthesis of tetrasubstituted dienes and cyclopentadienes. Chemical Communications, 2013, 49, 7436.	2.2	22
108	Tandem Michael addition/ylide olefination reaction for the synthesis of highly functionalized cyclohexadiene derivatives. Tetrahedron, 2008, 64, 8149-8154.	1.0	21

#	Article	IF	Citations
109	Iron carbenoid-mediated ylide reactions. Pure and Applied Chemistry, 2010, 82, 625-634.	0.9	21
110	Highly Efficient Formal [2+2+2] Strategy for the Rapid Construction of Polycyclic Spiroindolines: A Concise Synthesis of 11â€Demethoxyâ€16―epi â€myrtoidine. Angewandte Chemie, 2016, 128, 9370-9374.	1.6	21
111	Facile and controllable synthesis of multiply substituted benzenes via a formal [3+3] cycloaddition approach. Tetrahedron, 2013, 69, 284-292.	1.0	20
112	A sidearm-assisted phosphine for catalytic ylide intramolecular cyclopropanation. Organic Chemistry Frontiers, 2014, 1, 1035-1039.	2.3	19
113	Highly Enantioselective Nickel-Catalyzed Oxa-[3+3]-annulation of Phenols with Benzylidene Pyruvates for Chiral Chromans. Organic Letters, 2018, 20, 3858-3861.	2.4	19
114	Trisoxazoline/Cu(II)-catalyzed asymmetric intramolecular Friedel–Crafts alkylation reaction of indoles. Tetrahedron, 2009, 65, 6877-6881.	1.0	18
115	Reactions of Iron Carbenes with α,βâ€Unsaturated Esters by Using an Umpolung Approach: Mechanism and Applications. Chemistry - A European Journal, 2013, 19, 6766-6773.	1.7	18
116	Copper-Catalyzed Enantioselective Cyclopropanation of Internal Olefins with Diazomalonates. Organic Letters, 2017, 19, 5717-5719.	2.4	18
117	Facile Stereoselective Approach to Diverse Spiroheterocyclic Tetrahydropyrans: Concise Synthesis of (+)â€Broussonetineâ€G and H. Angewandte Chemie - International Edition, 2019, 58, 15016-15020.	7.2	18
118	Synthesis, structure, and ethylene polymerization behavior of nickel complexes based on benzoylmethylenetri(2-alkoxylphenyl)phosphorane. Dalton Transactions, 2012, 41, 4552.	1.6	17
119	Sidearm as a Control in the Asymmetric Ring Opening Reaction of Donorâ€Acceptor Cyclopropane. Chinese Journal of Chemistry, 2014, 32, 669-672.	2.6	17
120	Water as an Activator for Palladium(II) atalyzed Olefin Polymerization. Chemistry - A European Journal, 2013, 19, 13956-13961.	1.7	16
121	Winning Strategy for Iron-Based ATRP Using In Situ Generated Iodine as a Regulator. ACS Catalysis, 2020, 10, 14127-14134.	5.5	16
122	Reversible complexation mediated polymerization: an emerging type of organocatalytically controlled radical polymerization. Polymer Chemistry, 2022, 13, 2402-2419.	1.9	16
123	Stereoselective Synthesis of 1â€Aminocyclopropanecarboxylic Acid Derivatives via Ylide Cyclopropanation of Dehydroamino Acid Derivatives. Chinese Journal of Chemistry, 2011, 29, 995-1000.	2.6	15
124	PPh3-mediated intramolecular conjugation of alkyl halides with electron-deficient olefins: facile synthesis of chromans and relevant analogues. Chemical Communications, 2013, 49, 4570.	2.2	15
125	Synthesis and characterization of tridentate $[O~\hat{a}^*]N(H)X$ titanium complexes and their applications in olefin polymerization. Journal of Polymer Science Part A, 2013, 51, 2495-2503.	2.5	15
126	Highly enantioselective cyclopropanation of trisubstituted olefins. Science China Chemistry, 2018, 61, 526-530.	4.2	15

#	Article	IF	CITATIONS
127	Highly efficient access to well-defined linear polymers with substantial vinyl pendants <i>via</i> ATRP of divinyl monomers. Polymer Chemistry, 2018, 9, 4309-4315.	1.9	15
128	Copper Catalyzed[3+2] Annulation of Indoles with 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes. Acta Chimica Sinica, 2017, 75, 783.	0.5	15
129	An efficient catalytic ylide route to vinyl epoxides. Tetrahedron Letters, 2003, 44, 4137-4140.	0.7	14
130	Cyâ€SaBOX/Copper(II) atalyzed Highly Diastereo―and Enantioselective Synthesis of Bicyclic N,Oâ€Acetals. Angewandte Chemie, 2016, 128, 9366-9369.	1.6	14
131	Asymmetric Catalytic [3+2] Annulation of <scp>Donorâ€Acceptor</scp> Cyclopropane with Cyclic Ketones: Facile Access to Enantioenriched <scp>1â€Oxaspiro</scp> [4.5]decanes ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1629-1634.	2.6	14
132	Telluronium ylides in cyclopropanation and catalytic olefination. Heteroatom Chemistry, 2002, 13, 463-466.	0.4	13
133	AsPh3-catalyzed ylide cyclopropanation for the synthesis of trisubstituted vinylcyclopropane derivatives. Tetrahedron, 2008, 64, 5032-5035.	1.0	13
134	Homo- and Copolymerization of Ethylene and Norbornene with Anilido–Imine Chromium Catalysts. Polymers, 2016, 8, 69.	2.0	13
135	Highly Efficient Atom Transfer Radical Polymerization System Based on the SaBOX/Copper Catalyst. Macromolecules, 2019, 52, 9792-9798.	2.2	12
136	Iron-Catalyzed Three-Component Reaction: Multiple C–C Bond Cleavages and Reorganizations. Organic Letters, 2013, 15, 3606-3609.	2.4	11
137	Yb(NTf ₂) ₃ /HFIP induced high isotacticity in atom transfer radical polymerization of methyl methacrylate. Polymer Chemistry, 2018, 9, 4711-4715.	1.9	11
138	Catalytic Diastereoselective [5 + 2] Annulation of $\langle i \rangle N \langle i \rangle$ -Acryloyl Indoles with Cyclic Sulfonyl Enamides: Facile Access to Isoeburnamonine. Organic Letters, 2020, 22, 1013-1017.	2.4	11
139	A Synthesis of Multifunctionalized Indoles from $[3+2]$ Annulation of 2-Bromocyclopropenes with Anilines. Organic Letters, 2019, 21, 4097-4100.	2.4	10
140	Synthesis, Characterization, and Highly Selective Ethylene Dimerization to 1â∈Butene of [O ^{â°'} NX]Ni(II) Complexes. Chinese Journal of Chemistry, 2012, 30, 1105-1113.	2.6	9
141	Double \hat{I}^3 -alkylation of allylic phosphorus ylides: a unique access to oxa-bicyclic[3.3.0] diene skeletons. Chemical Communications, 2014, 50, 808-810.	2.2	9
142	Access to Hexahydrocarbazoles: The Thorpe–Ingold Effects of the Ligand on Enantioselectivity. Angewandte Chemie, 2017, 129, 7046-7049.	1.6	9
143	Low temperature effect on ATRP of styrene and substituted styrenes enabled by SaBOX ligand. Polymer, 2019, 178, 121630.	1.8	9
144	An efficient and mild route to highly fluorinated polyolefins <i>via</i> copolymerization of ethylene and 5-perfluoroalkylnorbornenes. Polymer Chemistry, 2019, 10, 3604-3609.	1.9	9

#	Article	IF	CITATIONS
145	Highly Stereoselective Direct Construction of Diarylâ€Substituted Cyclobutanes â€. Chinese Journal of Chemistry, 2020, 38, 259-262.	2.6	9
146	Double-Linear Insertion Mode of $\hat{l}\pm, \hat{l}\%$ -Dienes Enabled by Thio-imino-quinoline Iron Catalyst. ACS Catalysis, 2020, 10, 15092-15103.	5.5	7
147	Highly branched polymethacrylates prepared efficiently: brancher-directed topology and application performance. Polymer Chemistry, 2021, 12, 6606-6615.	1.9	7
148	Allenamideâ€Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (â^')à€Deoxoapodine, (â^')à€Kopsifolineâ€D and (±)à€Melotenineâ€A. Angewandte Chemie - International Educación (a company de la	di tia n,	6
149	Synthesis and characterization of titanium complexes bearing sulfoxide groups and their catalytic behaviors in ethylene homo- and copolymerization. Science China Chemistry, 2014, 57, 1144-1149.	4.2	5
150	Facile Stereoselective Approach to Diverse Spiroheterocyclic Tetrahydropyrans: Concise Synthesis of (+)â€Broussonetineâ€G and H. Angewandte Chemie, 2019, 131, 15158-15162.	1.6	5
151	Selectivity Switch in a Rhodium(II) Carbene Triggered Cyclopentannulation: Divergent Access to Three Polycyclic Indolines. Angewandte Chemie, 2019, 131, 4389-4393.	1.6	5
152	A Versatile Enantioselective Catalytic Cyclopropanationâ€Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angewandte Chemie, 2020, 132, 19126-19131.	1.6	5
153	Synthesis, Structure and Ethylene Polymerization Behavior of Group 4 Metal Complexes Bearing Salicylaldaminato Ligands with Appended Donor Functionality. Acta Chimica Sinica, 2012, 70, 1909.	0.5	5
154	A Tandem Intramolecular Michael Addition/Wittig Reaction for the Synthesis of Fused Cyclohexadiene Derivatives. Chinese Journal of Chemistry, 2010, 28, 1618-1622.	2.6	4
155	Synthesis, characterization, and catalytic behaviors of β-carbonylenamine-derived metal complexes (MÂ=ÂTi, Zr) in styrene polymerization. Journal of Organometallic Chemistry, 2014, 761, 142-146.	0.8	4
156	(ArO)TiR3 complexes for highly syndiospecific styrene polymerization. Journal of Molecular Catalysis A, 2014, 383-384, 77-82.	4.8	4
157	Stereospecific synthesis of highly functionalized benzo [3.1.0] bicycloalkanes via multistep cascade reactions. Organic Chemistry Frontiers, 2014, 1, 965-968.	2.3	4
158	Synthesis of novel polyethers with abundant reactive sites and diverse skeletons based on the ring-opening reaction of D–A cyclopropanes. Polymer Chemistry, 2020, 11, 5969-5973.	1.9	1
159	Direct knitting privileged molecular catalysts into recyclable single-site catalysts with enhanced activity. Science China Chemistry, 2020, 63, 419-420.	4.2	1
160	Pseudo-C3-Symmetric Trisoxazolines as Ligands in Copper Catalyzed Enantioselective Diels—Alder Reaction ChemInform, 2004, 35, no.	0.1	0
161	In deep memory of Professor Rolf Huisgen, a great chemist, who passed away on March 26, 2020. Chinese Journal of Chemistry, 2020, 38, 529-529.	2.6	O
162	Intramolecular Ring-opening of Indole-cyclopropanes [※] . Acta Chimica Sinica, 2022, 80, 255.	0.5	0

#	Article	IF	CITATIONS
163	Allenamide Initiated Cascade [2+2+2] Annulation Enabling the Divergent Total Synthesis of (â€)â€Deoxoapodine, (â€)â€Kopsifoline D and (±)â€Melotenine A. Angewandte Chemie, 0, , .	1.6	0