
Zhongquan Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roadmap on superoscillations. Journal of Optics (United Kingdom), 2019, 21, 053002.	2.2	111
2	All-dielectric metalens for terahertz wave imaging. Optics Express, 2018, 26, 14132.	3.4	58
3	Super-Oscillation Far-Field Focusing Lens Based on Ultra-Thin Width-Varied Metallic Slit Array. IEEE Photonics Technology Letters, 2016, 28, 335-338.	2.5	46
4	Morphology-controlled MnO ₂ –graphene oxide–diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors. Dalton Transactions, 2016, 45, 936-942.	3.3	45
5	Broadband Achromatic Subâ€Diffraction Focusing by an Amplitudeâ€Modulated Terahertz Metalens. Advanced Optical Materials, 2020, 8, 2000842.	7.3	43
6	Super-oscillation focusing lens based on continuous amplitude and binary phase modulation. Optics Express, 2014, 22, 22163.	3.4	42
7	Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light. Optics Express, 2016, 24, 11002.	3.4	42
8	Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation. Scientific Reports, 2016, 6, 29068.	3.3	39
9	Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens. Optics Express, 2018, 26, 29817.	3.4	34
10	Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression. Optics Express, 2017, 25, 27104.	3.4	27
11	Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams. Optics Express, 2018, 26, 16585.	3.4	27
12	Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave. Optics Express, 2018, 26, 7866.	3.4	26
13	Highâ€Numericalâ€Aperture Dielectric Metalens for Superâ€Resolution Focusing of Oblique Incident Light. Advanced Optical Materials, 2020, 8, 1901885.	7.3	26
14	Planar binary-phase lens for super-oscillatory optical hollow needles. Scientific Reports, 2017, 7, 4697.	3.3	23
15	Broadband Dielectric Metalens for Polarization Manipulating and Superoscillation Focusing of Visible Light. ACS Photonics, 2020, 7, 180-189.	6.6	23
16	Holographic Super-Resolution Metalens for Achromatic Sub-Wavelength Focusing. ACS Photonics, 2021, 8, 2294-2303.	6.6	22
17	Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal Physics D: Applied Physics, 2019, 52, 505110.	2.8	21
18	Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Applied Optics, 2018, 57, 7905.	1.8	20

ZHONGQUAN WEN

#	Article	IF	CITATIONS
19	The Fabrication of Large-Area, Uniform Graphene Nanomeshes for High-Speed, Room-Temperature Direct Terahertz Detection. Nanoscale Research Letters, 2018, 13, 190.	5.7	19
20	Terahertz metalens of hyper-dispersion. Photonics Research, 2022, 10, 886.	7.0	17
21	Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields. Optics Letters, 2019, 44, 110.	3.3	16
22	Double-Layer Metallic Holes Lens Based on Continuous Modulation of Phase and Amplitude. IEEE Photonics Technology Letters, 2014, 26, 1801-1804.	2.5	13
23	Polarization-conversion microscopy for imaging the vectorial polarization distribution in focused light. Optica, 2021, 8, 984.	9.3	13
24	Broadband integrated metalens for creating super-oscillation 3D hollow spot by independent control of azimuthally and radially polarized waves. Journal Physics D: Applied Physics, 2019, 52, 415103.	2.8	12
25	Subdiffraction focusing of total electric fields of terahertz wave. Optics Communications, 2020, 458, 124764.	2.1	9
26	Energy gap of novel edge-defected graphene nanoribbons. Japanese Journal of Applied Physics, 2016, 55, 085101.	1.5	6
27	Fabrication of Graphene Nanomesh FET Terahertz Detector. Micromachines, 2021, 12, 641.	2.9	6
28	Super-resolution photolithography using dielectric photonic crystal. Optics Letters, 2019, 44, 1182.	3.3	6
29	High-Speed Mid-Infrared Frequency Modulation Spectroscopy Based on Quantum Cascade Laser. IEEE Photonics Technology Letters, 2016, 28, 1727-1730.	2.5	5
30	Enlarging focal depth using epsilon-near-zero metamaterial for plasmonic lithography. Optics Letters, 2020, 45, 3159.	3.3	5
31	Negative index metamaterial at ultraviolet range for subwavelength photolithography. Nanophotonics, 2022, 11, 1643-1651.	6.0	4
32	Computation and Simulation on Energy Band of Graphene Nanoribbons. , 2020, , .		0