Xiao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4998211/publications.pdf

Version: 2024-02-01

1039880 1058333 21 190 9 14 citations h-index g-index papers 22 22 22 277 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption. Polymer International, 2006, 55, 1230-1235.	1.6	36
2	The effect of multi-walled carbon nanotubes on the molecular orientation of poly(vinyl alcohol) in drawn composite films. Fibers and Polymers, 2006, 7, 323-327.	1.1	21
3	Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly (vinyl alcohol) and polyurethane foams for removal of cadmium. Journal of Hazardous Materials, 2008, 156, 381-386.	6.5	21
4	Cadmium sorption properties of poly(vinyl alcohol)/hydroxyapatite cryogels: I. kinetic and isotherm studies. Journal of Sol-Gel Science and Technology, 2007, 43, 99-104.	1.1	18
5	Cadmium sorption properties of poly(vinyl alcohol)/hydroxyapatite cryogels: II. Effects of operating parameters. Journal of Sol-Gel Science and Technology, 2008, 45, 17-22.	1.1	17
6	Effect of micro-slit plate structure on the sound absorption properties of discarded corn cob husk fiber. Fibers and Polymers, 2015 , 16 , $1562-1567$.	1.1	15
7	Research on sound absorption properties of multilayer structural material based on discarded polyester fiber. Journal of the Textile Institute, 2014, 105, 1009-1013.	1.0	12
8	Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	11
9	Preparation of Mg(OH)2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization. Applied Surface Science, 2016, 363, 189-196.	3.1	11
10	Construction of biological flame retardant layer on cotton fabric via photografting of nucleotide/amino acid monomers. Cellulose, 2022, 29, 1205-1218.	2.4	11
11	Facile Preparation of Flame Retardant Cotton Fabric via Adhesion of Mg(OH)2 by the Assistance of Ionic Liquid. Polymers, 2020, 12, 259.	2.0	7
12	Graft and Fixation of Modified Cationic Dye onto Cotton Fiber via ATRP and UV Method. Journal of Fiber Science and Technology, 2017, 73, 114-121.	0.2	4
13	Immobilization of modified hydroxyapatite particles onto PET filter fabric for adsorption property. Journal of Industrial Textiles, 2016, 46, 88-100.	1.1	2
14	Surface Modification of Linen Fabric via UV Induced Grafting to Improve Dyeability and Wearability. Journal of Natural Fibers, 2018, 15, 474-482.	1.7	2
15	Photografting of 2-(dimethylamino)ethyl methacrylate onto cellulosic material for better antibacterial property. Fibers and Polymers, 2014, 15, 2453-2457.	1.1	1
16	Coloration and Decoloration of Textiles Using a TiO2 Composite Pigment. Fibers and Polymers, 2018, 19, 1420-1427.	1.1	1
17	Improvement of Flame Retardancy of PET Fabric via UV Induced Grafting of Organic Phosphorus Monomer. Journal of Fiber Science and Technology, 2016, 72, 200-205.	0.2	0
18	Research on Ecological Dyeing of Silane-Modified Polyester Fabric via Photografting. Journal of Fiber Science and Technology, 2018, 74, 165-170.	0.2	0

XIAO WANG

#	Article	IF	CITATIONS
19	Influence of Eco-Friendly Surface Pretreatment of Cotton Fabric on Mg(OH) ₂ Immobilization for Flame Retardancy. Journal of Fiber Science and Technology, 2021, 77, 196-202.	0.2	O
20	Development of New Functional Composites from Onion and Short Natural Fibers. Journal of Fiber Science and Technology, 2016, 72, 61-65.	0.2	0
21	Diffusion of single oxidation pond. Thermal Science, 2016, 20, 849-853.	0.5	O