Antun Balaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997942/publications.pdf

Version: 2024-02-01

all docs

60 1,353 20 36 papers citations h-index g-index

64 64 64 825

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	Shell-shaped Bose-Einstein condensates based on dual-species mixtures. Physical Review A, 2022, 106, .	2.5	16
2	Spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensate solver. Computer Physics Communications, 2021, 259, 107657.	7.5	20
3	OpenMP solver for rotating spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensates. Computer Physics Communications, 2021, 264, 107926.	7.5	8
4	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
5	Faraday and Resonant Waves in Dipolar Cigar-Shaped Bose-Einstein Condensates. Symmetry, 2019, 11, 1090.	2.2	6
6	C and Fortran OpenMP programs for rotating Bose–Einstein condensates. Computer Physics Communications, 2019, 240, 74-82.	7.5	22
7	Stability of quantum degenerate Fermi gases of tilted polar molecules. Physical Review Research, 2019, 1, .	3.6	4
8	Dynamics of weakly interacting bosons in optical lattices with flux. Physical Review A, 2018, 98, .	2.5	3
9	Ground state of an ultracold Fermi gas of tilted dipoles in elongated traps. New Journal of Physics, 2018, 20, 093016.	2.9	6
10	Interplay of coherent and dissipative dynamics in condensates of light. New Journal of Physics, 2018, 20, 055014.	2.9	23
11	VI-SEEM DREAMCLIMATE Service. Scalable Computing, 2018, 19, 215-221.	1.0	O
12	Time-of-flight expansion of trapped dipolar Fermi gases: From the collisionless to the hydrodynamic regime. Physical Review A, 2017, 95, .	2.5	7
13	OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross–Pitaevskii equation. Computer Physics Communications, 2017, 220, 503-506.	7.5	30
14	Analytical and numerical study of dirty bosons in a quasi-one-dimensional harmonic trap. New Journal of Physics, 2016, 18, 063003.	2.9	11
15	OpenMP Fortran and C programs for solving the time-dependent Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2016, 204, 209-213.	7.5	52
16	OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross–Pitaevskii equation. Computer Physics Communications, 2016, 209, 190-196.	7.5	39
17	Excitation spectra of a Bose-Einstein condensate with an angular spin-orbit coupling. Physical Review A, 2016, 94, .	2.5	11
18	Faraday and resonant waves in binary collisionally-inhomogeneous Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 165303.	1.5	8

#	Article	IF	Citations
19	Conditions for order and chaos in the dynamics of a trapped Bose-Einstein condensate in coordinate and energy space. European Physical Journal D, 2016, 70, 1.	1.3	8
20	CUDA programs for solving the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2016, 200, 406-410.	7.5	51
21	Hybrid OpenMP/MPI programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2016, 200, 411-417.	7.5	61
22	Dissipative two-mode Tavis-Cummings model with time-delayed feedback control. Physical Review A, 2015, 92, .	2.5	20
23	Fortran and C programs for the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2015, 195, 117-128.	7.5	94
24	Publisher's Note: Faraday waves in collisionally inhomogeneous Bose-Einstein condensates [Phys. Rev. A 89, 023609 (2014)]. Physical Review A, 2014, 90, .	2.5	1
25	Fragmentation of a Bose-Einstein Condensate Through Periodic Modulation of the Scattering Length. Advances in Dynamics, Patterns, Cognition, 2014, , 119-129.	0.3	0
26	Faraday waves in collisionally inhomogeneous Bose-Einstein condensates. Physical Review A, 2014, 89, .	2.5	35
27	A nonlinear model of the dynamics of radial dislocations in microtubules. Applied Mathematics and Computation, 2014, 237, 227-237.	2.2	24
28	An Analysis of FFTW and FFTE Performance. Modeling and Optimization in Science and Technologies, 2014, , 163-170.	0.7	1
29	E-Infrastructures for International Cooperation. , 2014, , 380-430.		1
30	Dipolar Bose-Einstein condensates in weak anisotropic disorder. Physical Review A, 2013, 88, .	2.5	37
31	Scaling exponents and phase separation in a nonlinear network model inspired by the gravitational accretion. Physica D: Nonlinear Phenomena, 2013, 255, 52-57.	2.8	1
32	Geometric resonances in Bose–Einstein condensates with two- and three-body interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 065303.	1.5	37
33	Parametric and geometric resonances of collective oscillation modes in Bose–Einstein condensates. Physica Scripta, 2012, T149, 014003.	2.5	11
34	Faraday waves in binary nonmiscible Bose-Einstein condensates. Physical Review A, 2012, 85, .	2.5	57
35	SPEEDUP Code for Calculation of Transition Amplitudes via the Effective Action Approach. Communications in Computational Physics, 2012, 11, 739-755.	1.7	5
36	C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2012, 183, 2021-2025.	7.5	168

#	Article	IF	CITATIONS
37	Fast converging path integrals for time-dependent potentials: I. Recursive calculation of short-time expansion of the propagator. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P03004.	2.3	10
38	Development of Grid e-Infrastructure in South-Eastern Europe. Journal of Grid Computing, 2011, 9, 135-154.	3.9	24
39	Fast converging path integrals for time-dependent potentials: II. Generalization to many-body systems and real-time formalism. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P03005.	2.3	9
40	Nonlinear Bose-Einstein-condensate dynamics induced by a harmonic modulation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> -wave scattering length. Physical Review A, 2011, 84, .	2.5	56
41	SEE-GRID eInfrastructure for Regional eScience. , 2011, , 91-103.		1
42	Ultra-fast converging path-integral approach for rotating ideal Bose–Einstein condensates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1539-1549.	2.1	21
43	Recursive Schrödinger equation approach to faster converging path integrals. Physical Review E, 2009, 79, 036701.	2.1	21
44	Properties of quantum systems via diagonalization of transition amplitudes. II. Systematic improvements of short-time propagation. Physical Review E, 2009, 80, 066706.	2.1	14
45	Computation of asteroid proper elements on the Grid. Serbian Astronomical Journal, 2009, , 75-86.	0.6	3
46	Consequences of increased longevity for wealth, fertility, and population growth. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 543-550.	2.6	3
47	Fast convergence of path integrals for many-body systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3341-3349.	2.1	18
48	Accelerated path integral calculations for many-body systems. Journal of Physics: Conference Series, 2008, 128, 012048.	0.4	0
49	Energy levels and expectation values via accelerated path integral Monte Carlo. Journal of Physics: Conference Series, 2008, 128, 012062.	0.4	0
50	The Use of Path Integral Ideals: Deriving the Euler Summation Formula for Path Integrals. AIP Conference Proceedings, 2006, , .	0.4	0
51	Efficient calculation of energy spectra using path integrals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 360, 205-209.	2.1	7
52	Energy estimators and calculation of energy expectation values in the path integral formalism. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 360, 217-223.	2.1	6
53	Generalization of Euler's summation formula to path integrals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 344, 84-90.	2.1	19
54	Jaggedness of path integral trajectories. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 345, 258-264.	2.1	8

ANTUN BALAZ

#	Article	IF	Citations
55	Asymptotic properties of path integral ideals. Physical Review E, 2005, 72, 036128.	2.1	12
56	Systematic speedup of path integrals of a genericN-fold discretized theory. Physical Review B, 2005, 72,	3.2	18
57	Systematically Accelerated Convergence of Path Integrals. Physical Review Letters, 2005, 94, 180403.	7.8	25
58	Dyons in Nonabelian Born-Infeld Theory. Lecture Notes in Physics, 2003, , 363-366.	0.7	0
59	Dyons in non-Abelian Born-Infeld theory. Physical Review D, 2002, 65, .	4.7	O
60	E-Infrastructures for International Cooperation., 0,, 141-193.		1