
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997928/publications.pdf Version: 2024-02-01

DETED R FILIS

#	Article	IF	CITATIONS
1	Enzyme kinetic approach for mechanistic insight and predictions of in vivo starch digestibility and the glycaemic index of foods. Trends in Food Science and Technology, 2022, 120, 254-264.	7.8	28
2	Inter-laboratory analysis of cereal beta-glucan extracts of nutritional importance: An evaluation of different methods for determining weight-average molecular weight and molecular weight distribution. Food Hydrocolloids, 2022, 127, 107510.	5.6	4
3	Structure–function studies of chickpea and durum wheat uncover mechanisms by which cell wall properties influence starch bioaccessibility. Nature Food, 2021, 2, 118-126.	6.2	37
4	The impact of replacing wheat flour with cellular legume powder on starch bioaccessibility, glycaemic response and bread roll quality: A double-blind randomised controlled trial in healthy participants. Food Hydrocolloids, 2021, 114, 106565.	5.6	33
5	α-Amylase action on starch in chickpea flour following hydrothermal processing and different drying, cooling and storage conditions. Carbohydrate Polymers, 2021, 259, 117738.	5.1	16
6	Dietary Glycaemic Index Labelling: A Global Perspective. Nutrients, 2021, 13, 3244.	1.7	17
7	Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB Journal, 2020, 34, 9995-10010.	0.2	30
8	Dietary Fibre Consensus from the International Carbohydrate Quality Consortium (ICQC). Nutrients, 2020, 12, 2553.	1.7	42
9	Snacking on whole almonds for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: the ATTIS study, a randomized controlled trial. American Journal of Clinical Nutrition, 2020, 111, 1178-1189.	2.2	34
10	Incorporation of a novel leguminous ingredient into savoury biscuits reduces their starch digestibility: Implications for lowering the Glycaemic Index of cereal products. Food Chemistry: X, 2020, 5, 100078.	1.8	23
11	Chemical, physical and glycaemic characterisation of PulseON®: A novel legume cell-powder ingredient for use in the design of functional foods. Journal of Functional Foods, 2020, 68, 103918.	1.6	36
12	Kinetics of α-Amylase Action on Starch. , 2019, , 291-302.		0
13	Use of the Extended Fujita method for representing the molecular weight and molecular weight distributions of native and processed oat beta-glucans. Scientific Reports, 2018, 8, 11809.	1.6	4
14	Mechanisms of starch digestion by α -amylase—Structural basis for kinetic properties. Critical Reviews in Food Science and Nutrition, 2017, 57, 875-892.	5.4	315
15	Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 2017, 164, 154-161.	5.1	104
16	Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydrate Polymers, 2017, 166, 387-397.	5.1	28
17	The impact of oat structure and β-glucan on in vitro lipid digestion. Journal of Functional Foods, 2017, 38, 378-388.	1.6	52
18	In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 2017, 37, 263-271	1.6	33

#	Article	IF	CITATIONS
19	Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 2016, 116, 816-833.	1.2	255
20	The role of sugars and sweeteners in food, diet and health: Alternatives for the future. Trends in Food Science and Technology, 2016, 56, 158-166.	7.8	109
21	The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food and Function, 2016, 7, 69-78.	2.1	70
22	Infrared microspectroscopic imaging of plant tissues: spectral visualization of <i>Triticum aestivum</i> kernel and Arabidopsis leaf microstructure. Plant Journal, 2015, 84, 634-646.	2.8	18
23	Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR. Biomacromolecules, 2015, 16, 1614-1621.	2.6	44
24	Impact of cell wall encapsulation of almonds on in vitro duodenal lipolysis. Food Chemistry, 2015, 185, 405-412.	4.2	66
25	A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility. Food and Function, 2015, 6, 3634-3641.	2.1	87
26	Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. American Journal of Clinical Nutrition, 2015, 102, 791-800.	2.2	134
27	Effect of mastication on lipid bioaccessibility of almonds in a randomized human study and its implications for digestion kinetics, metabolizable energy, and postprandial lipemia. American Journal of Clinical Nutrition, 2015, 101, 25-33.	2.2	102
28	Modelling of nutrient bioaccessibility in almond seeds based on the fracture properties of their cell walls. Food and Function, 2014, 5, 3096-3106.	2.1	42
29	Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. British Journal of Nutrition, 2014, 112, S4-S13.	1.2	136
30	The effects of processing and mastication on almond lipid bioaccessibility using novel methods of <i>in vitro</i> digestion modelling and micro-structural analysis. British Journal of Nutrition, 2014, 112, 1521-1529.	1.2	73
31	A mechanistic approach to studies of the possible digestion of retrograded starch by α-amylase revealed using a log of slope (LOS) plot. Carbohydrate Polymers, 2014, 113, 182-188.	5.1	60
32	A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food and Function, 2014, 5, 2751-2758.	2.1	193
33	The surface structure of a complex substrate revealed by enzyme kinetics and Freundlich constants for α-amylase interaction with the surface of starch. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3095-3101.	1.1	28
34	A calorie is not necessarily a calorie: Technical choice, nutrient bioaccessibility, and interspecies differences of edible plants. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E991-E991.	3.3	21
35	Studies of the effect of maltose on the direct binding of porcine pancreatic α-amylase to maize starch. Carbohydrate Research, 2012, 358, 67-71.	1.1	24
36	Analysis of starch amylolysis using plots for first-order kinetics. Carbohydrate Polymers, 2012, 87, 2189-2197.	5.1	278

#	Article	IF	CITATIONS
37	The role of dietary fiber in regulating lipid bioaccessibility of almonds during mastication. FASEB Journal, 2012, 26, 1015.4.	0.2	1
38	How analysis of data from alphaâ€amylase catalysed starch digestibility performed in vitro contributes to an understanding of rates and extent of digestion starchy foods in vivo. FASEB Journal, 2012, 26, 638.9.	0.2	0
39	Study of the Structure and Properties of Native and Hydrothermally Processed Wild-Type, <i>lam</i> and <i>r</i> Variant Pea Starches that Affect Amylolysis of These Starches. Biomacromolecules, 2011, 12, 123-133.	2.6	38
40	Human αâ€amylase and starch digestion: An interesting marriage. Starch/Staerke, 2011, 63, 395-405.	1.1	254
41	Binding interactions of \hat{l} ±-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydrate Polymers, 2011, 86, 1038-1047.	5.1	116
42	The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic α-amylase. Carbohydrate Polymers, 2010, 81, 57-62.	5.1	71
43	Factors affecting the action of α-amylase on wheat starch: Effects of water availability. An enzymic and structural study. Food Chemistry, 2009, 113, 471-478.	4.2	40
44	Advances in plant food processing in the Near Eastern Epipalaeolithic and implications for improved edibility and nutrient bioaccessibility: an experimental assessment of Bolboschoenus maritimus (L.) Palla (sea club-rush). Vegetation History and Archaeobotany, 2008, 17, 19-27.	1.0	71
45	Dissolution kinetics of water-soluble polymers: The guar gum paradigm. Carbohydrate Polymers, 2008, 74, 519-526.	5.1	21
46	Release of Protein, Lipid, and Vitamin E from Almond Seeds during Digestion. Journal of Agricultural and Food Chemistry, 2008, 56, 3409-3416.	2.4	160
47	Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects. American Journal of Clinical Nutrition, 2008, 88, 922-929.	2.2	104
48	Almonds and postprandial glycemia—a dose-response study. Metabolism: Clinical and Experimental, 2007, 56, 400-404.	1.5	142
49	Mathematical modelling of lipid bioaccessibility in almond seeds. FASEB Journal, 2007, 21, A119.	0.2	1
50	In vitro and in vivo modelling of the gastrointestinal environment for the release of nutrients and phytochemicals from almond seeds. FASEB Journal, 2007, 21, A119.	0.2	0
51	Almonds Decrease Postprandial Glycemia, Insulinemia, and Oxidative Damage in Healthy Individuals. Journal of Nutrition, 2006, 136, 2987-2992.	1.3	172
52	Dissolution kinetics of guar gum powders—III. Effect of particle size. Carbohydrate Polymers, 2006, 64, 239-246.	5.1	42
53	Role of cell walls in the bioaccessibility of lipids in almond seeds. American Journal of Clinical Nutrition, 2004, 80, 604-613.	2.2	273
54	The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochimica Et Biophysica Acta - General Subjects, 2002, 1571, 55-63.	1,1	96

#	Article	IF	CITATIONS
55	An investigation of the action of porcine pancreatic α-amylase on native and gelatinised starches. Biochimica Et Biophysica Acta - General Subjects, 2001, 1525, 29-36.	1.1	119
56	African plant foods rich in non-starch polysaccharides reduce postprandial blood glucose and insulin concentrations in healthy human subjects. British Journal of Nutrition, 1998, 80, 419-428.	1.2	42
57	Structure and mechanical properties of polysaccharides. Macromolecular Symposia, 1998, 127, 13-21.	0.4	7
58	A physico-chemical perspective of plant polysaccharides in relation to glucose absorption, insulin secretion and the entero-insular axis. Proceedings of the Nutrition Society, 1996, 55, 881-898.	0.4	78
59	Rheological properties of guar galactomannan and rice starch mixtures— I. Steady shear measurements. Carbohydrate Polymers, 1995, 28, 121-130.	5.1	69