Zhonghao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997896/publications.pdf

Version: 2024-02-01

185998 214527 2,469 79 28 47 citations g-index h-index papers 80 80 80 2325 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Advances in Colloid and Interface Science, 2020, 278, 102136.	7.0	31
2	Effect of Zn addition on the microstructures and mechanical behaviors of As-cast Mg-2.5Y-1Ce-0.5Mn alloy. Materials Research Express, 2020, 7, 016564.	0.8	O
3	Nanoindentation creep deformation behaviour of high nitrogen nickel-free austenitic stainless steel. Materials Science and Technology, 2019, 35, 1592-1599.	0.8	6
4	A universal method to fabricate Cu films with superhydrophobic and anti-corrosion properties. Materials Science and Technology, 2019, 35, 695-701.	0.8	6
5	Nanoindentation creep behavior and its relation to activation volume and strain rate sensitivity of nanocrystalline Cu. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 35-41.	2.6	30
6	Strain rate dependence of tensile strength and ductility of nano and ultrafine grained coppers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 341-349.	2.6	16
7	Strain Rate Dependence of Tensile Properties of Extruded Mg–9Y–3Zn–1Mn Alloy. Advanced Engineering Materials, 2018, 20, 1800123.	1.6	3
8	Plastic deformation and fracture behaviour of high-nitrogen nickel-free austenitic stainless steel. Materials Science and Technology, 2017, 33, 1635-1644.	0.8	9
9	Fabrication of Superhydrophobic Calcium Phosphate Coating on Mg-Zn-Ca alloy and Its Corrosion Resistance. Journal of Materials Engineering and Performance, 2017, 26, 6117-6129.	1.2	19
10	A novel open architecture built by ultra-fine single-crystal Co ₂ (CO ₃)(OH) ₂ nanowires and reduced graphene oxide for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17171-17179.	5.2	74
11	A unique porous architecture built by ultrathin wrinkled NiCoO ₂ /rGO/NiCoO ₂ sandwich nanosheets for pseudocapacitance and Li ion storage. Journal of Materials Chemistry A, 2016, 4, 10304-10313.	5. 2	72
12	Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 432-442.	2.6	25
13	Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Scientific Reports, 2015, 5, 16629.	1.6	73
14	Ultrathin Mesoporous NiCo ₂ O ₄ Nanosheet Networks as Highâ€Performance Anodes for Lithium Storage. ChemPlusChem, 2015, 80, 1725-1731.	1.3	31
15	Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni. Journal of Alloys and Compounds, 2015, 647, 670-680.	2.8	55
16	The Synthesis and Electrochemical Behavior of High-Nitrogen Nickel-Free Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 2014, 23, 3957-3962.	1.2	16
17	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
18	Cu surfaces with controlled structures: From intrinsically hydrophilic to apparently superhydrophobic. Applied Surface Science, 2014, 290, 320-326.	3.1	28

#	Article	IF	CITATIONS
19	Effect of strain rate on tensile properties of electric brush-plated nanocrystalline copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 621-628.	2.6	22
20	Microstructures and mechanical properties of extruded Mg–2Sn–xYb (x=0, 0.1, 0.5Âat.%) sheets. Journal of Magnesium and Alloys, 2014, 2, 257-264.	5.5	10
21	Influences of Y and Y-Rich Mischmetal Additions on Microstructure and Compressive Properties of As-Cast Al-Mg-Mn Alloy. Journal of Materials Engineering and Performance, 2013, 22, 1201-1207.	1.2	4
22	Stable ductility of an electrodeposited nanocrystalline Niâ€"20wt.%Fe alloy in tensile plastic deformation. Journal of Alloys and Compounds, 2013, 553, 99-105.	2.8	9
23	Friction and Wear Behavior of Nanocrystalline Nickel in Air and Vacuum. Tribology Letters, 2013, 49, 481-490.	1.2	14
24	Dislocation-mediated creep process in nanocrystalline Cu. Chinese Physics B, 2013, 22, 037303.	0.7	7
25	Study on energy loss of high-energy protons in nano crystalline Ni. Radiation Effects and Defects in Solids, 2013, 168, 933-939.	0.4	0
26	Preparation of Nanocrystalline Cu Films by Brush-Plating. Integrated Ferroelectrics, 2012, 137, 52-60.	0.3	2
27	High-speed creep process mediated by rapid dislocation absorption in nanocrystalline Cu. Journal of Applied Physics, 2012, 111, 063506.	1.1	16
28	Microstructure and Mechanical Properties of an Extruded Mg-2Dy-0.5Zn Alloy. Journal of Materials Science and Technology, 2012, 28, 543-551.	5.6	23
29	Self-assembly growth and electron work function of copper phthalocyanine films on indium tin oxide glass. Applied Surface Science, 2012, 258, 3373-3377.	3.1	8
30	On the correlation between surface morphology and electron work function of indium tin oxide. Journal of Applied Physics, 2012, 111, 123714.	1.1	15
31	Changes in surface morphology and work function caused by corrosion in aluminum alloys. Journal of Physics and Chemistry of Solids, 2012, 73, 781-787.	1.9	16
32	Double-peak ageing behavior of Mg–2Dy–0.5Zn alloy. Journal of Alloys and Compounds, 2011, 509, 8268-8275.	2.8	31
33	Preparation of nano-silver iodide powders and their efficiency as ice-nucleating agent in weather modification. Advanced Powder Technology, 2011, 22, 613-616.	2.0	12
34	Synthesis of β-phase Ag1â^'xCuxl (x=0â€"0.5) solid solutions nanocrystals. Materials Research Bulletin, 2011, 46, 910-913.	2.7	5
35	Superhydrophobicity of bionic alumina surfaces fabricated by hard anodizing. Journal of Bionic Engineering, 2011, 8, 369-374.	2.7	32
36	An elevated temperature Mg–Dy–Zn alloy with long period stacking ordered phase by extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3609-3614.	2.6	54

#	Article	IF	CITATIONS
37	Preparation of nano-Cr2â^'xAlxO3 (x=0â€"1) solid solution powders by using citrate-dispersant method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 172, 33-36.	1.7	2
38	The origin of the ultrahigh strength and good ductility in nanotwinned copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4270-4274.	2.6	23
39	Microstructures and mechanical properties of Mg–2Y–1Mn–1–2Nd alloys fabricated by extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4383-4388.	2.6	12
40	Fabrication of super-hydrophobic nano-sized copper films by electroless plating. Thin Solid Films, 2010, 518, 3731-3734.	0.8	13
41	Super-hydrophobic property of nano-sized cupric oxide films. Surface and Coatings Technology, 2010, 204, 3200-3204.	2.2	53
42	Wetting of Cu substrates with micrometer and nanometer grains by molten Snâ€3.5Agâ€0.7Cu alloy. Surface and Interface Analysis, 2010, 42, 1681-1684.	0.8	5
43	Dual-phase nanocrystalline Ni–Co alloy with high strength and enhanced ductility. Journal of Materials Research, 2010, 25, 401-405.	1.2	5
44	ENHANCED TENSILE DUCTILITY IN AN ELECTRODEPOSITED CU WITH NANO-SIZED GROWTH TWINS. International Journal of Modern Physics B, 2010, 24, 2537-2542.	1.0	3
45	Tensile-relaxation behavior of electrodeposited nanocrystalline Ni. Journal of Applied Physics, 2010, 108, 054319.	1.1	11
46	Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature. Journal of Applied Physics, 2009, 106 , .	1.1	16
47	The grain refinement mechanism of electrodeposited copper. Journal of Materials Research, 2009, 24, 3226-3236.	1.2	6
48	Microstructure and tensile deformation of nanocrystalline Cu produced by pulse electrodeposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 316-320.	2.6	19
49	Microstructure and properties of thin wall by laser cladding forming. Journal of Materials Processing Technology, 2009, 209, 4970-4976.	3.1	35
50	A novel electrodeposited nanostructured Ni coating with grain size gradient distribution. Surface and Coatings Technology, 2008, 203, 142-147.	2.2	22
51	Electroless Ni-P deposition on magnesium alloy from a sulfate bath. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 60-64.	0.4	4
52	Bulk Nanostructured Cu with High Strength and Good Ductility. Advanced Engineering Materials, 2008, 10, 41-45.	1.6	13
53	Formation of a Multiphase Gradient Structure in a Zr–Cu–Ni–Al–O Alloy. Advanced Engineering Materials, 2008, 10, 384-388.	1.6	12
54	The Optimal Grain Sized Nanocrystalline Ni with High Strength and Good Ductility Fabricated by a Direct Current Electrodeposition. Advanced Engineering Materials, 2008, 10, 539-546.	1.6	31

#	Article	IF	Citations
55	High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 410-416.	2.6	69
56	Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 136-141.	2.6	28
57	Enhanced tensile ductility in an electrodeposited nanocrystalline copper. Journal of Materials Research, 2008, 23, 2238-2244.	1.2	20
58	Mechanical behavior of an electrodeposited nanostructured Cu with a mixture of nanocrystalline grains and nanoscale growth twins in submicrometer grains. Journal of Applied Physics, 2008, 104, 084305.	1.1	18
59	Strong work-hardening effect in a multiphase ZrCuAlNiO alloy. Applied Physics Letters, 2008, 92, .	1.5	23
60	Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu. Journal of Applied Physics, 2008, 104, .	1.1	33
61	Ductile–brittle–ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6wt.% Co alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 75-81.	2.6	36
62	High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200, 5413-5418.	2,2	187
63	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Materialia, 2006, 54, 579-584.	2.6	113
64	Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Applied Physics Letters, 2006, 88, 143115.	1.5	83
65	Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. Journal of Applied Physics, 2006, 99, 076103.	1.1	61
66	AN INVESTIGATION OF SMOOTH NANOSIZED COPPER FILMS ON GLASS SUBSTRATE BY IMPROVED ELECTROLESS PLATING. Surface Review and Letters, 2006, 13, 471-478.	0.5	4
67	High corrosion-resistant Ni–P/Ni/Ni–P multilayer coatings on steel. Surface and Coatings Technology, 2005, 197, 61-67.	2.2	97
68	An analytical model for elastic stress field distribution in fibre composite with partially debonded interface. Composites Science and Technology, 2005, 65, 1176-1194.	3.8	17
69	Electroless Ni–P plating on AZ91D magnesium alloy from a sulfate solution. Journal of Alloys and Compounds, 2005, 391, 104-109.	2.8	127
70	A black phosphate coating for C1008 steel. Surface and Coatings Technology, 2004, 176, 215-221.	2.2	102
71	A new analytical model for three-dimensional elastic stress field distribution in short fibre composite. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2004, 366, 381-396.	2.6	31
72	Elastic–plastic stress transfer in short fibre-reinforced metal–matrix composites. Composites Science and Technology, 2004, 64, 1661-1670.	3.8	17

#	Article	IF	CITATIONS
73	An analytical study of the influence of thermal residual stresses on the elastic and yield behaviors of short fiber-reinforced metal matrix composites. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 248, 256-275.	2.6	56
74	Effects of microstructural variables on the deformation behaviour of dual-phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 190, 55-64.	2.6	150
75	A dislocation density approximation for the flow stress—grain size relation of polycrystals. Acta Metallurgica Et Materialia, 1995, 43, 3349-3360.	1.9	41
76	The relationship between ductility and material parameters for dual-phase steel. Journal of Materials Science, 1993, 28, 1814-1818.	1.7	38
77	A new relationship between the flow stress and the microstructural parameters for dual phase steel. Acta Metallurgica Et Materialia, 1992, 40, 1587-1597.	1.9	31
78	Influence of predeformation on microstructure and mechanical properties of 1020 dual phase steel. Materials Science and Technology, 1991, 7, 527-532.	0.8	13
79	Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. , 0, , .		1