Howard Choset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997759/publications.pdf

Version: 2024-02-01

109137 82410 7,530 156 35 72 citations h-index g-index papers 163 163 163 4650 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Conflict-Based Search Framework for Multiobjective Multiagent Path Finding. IEEE Transactions on Automation Science and Engineering, 2023, 20, 1262-1274.	3.4	9
2	Learning Cooperative Multi-Agent Policies With Partial Reward Decoupling. IEEE Robotics and Automation Letters, 2022, 7, 890-897.	3.3	2
3	Multi-Objective Path-Based D* Lite. IEEE Robotics and Automation Letters, 2022, 7, 3318-3325.	3.3	14
4	Continuum Robots for Medical Interventions. Proceedings of the IEEE, 2022, 110, 847-870.	16.4	80
5	A general locomotion control framework for multi-legged locomotors. Bioinspiration and Biomimetics, 2022, 17, 046015.	1.5	11
6	The Geometry of Optimal Gaits for Inertia-Dominated Kinematic Systems. IEEE Transactions on Robotics, 2022, 38, 3279-3299.	7.3	3
7	Design of a Biomimetic Tactile Sensor for Material Classification. , 2022, , .		8
8	Periodic SLAM: Using Cyclic Constraints to Improve the Performance of Visual-Inertial SLAM on Legged Robots., 2022,,.		1
9	Autonomous Ultrasound Scanning using Bayesian Optimization and Hybrid Force Control., 2022,,.		11
10	Multi-Objective Safe-Interval Path Planning With Dynamic Obstacles. IEEE Robotics and Automation Letters, 2022, 7, 8154-8161.	3.3	12
11	Online Kinematic Calibration for Legged Robots. IEEE Robotics and Automation Letters, 2022, 7, 8178-8185.	3.3	6
12	Coordination of lateral body bending and leg movements for sprawled posture quadrupedal locomotion. International Journal of Robotics Research, 2021, 40, 747-763.	5.8	15
13	Interleaving Graph Search and Trajectory Optimization for Aggressive Quadrotor Flight. IEEE Robotics and Automation Letters, 2021, 6, 5357-5364.	3.3	9
14	Evaluation of Hybrid Control and Palpation Assistance for Situational Awareness in Telemanipulated Task Execution. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 31-43.	2.1	3
15	FusionVLAD: A Multi-View Deep Fusion Networks for Viewpoint-Free 3D Place Recognition. IEEE Robotics and Automation Letters, 2021, 6, 2304-2310.	3.3	17
16	Reconstruction of Backbone Curves for Snake Robots. IEEE Robotics and Automation Letters, 2021, 6, 3264-3270.	3.3	12
17	Uncertainty-Based Adaptive Data Augmentation For Ultrasound Imaging Anatomical Variations. , 2021, , .		2
18	Guest Editorial: Special issue on "Topological methods in robotics― Autonomous Robots, 2021, 45, 611-612.	3.2	0

#	Article	IF	Citations
19	Frequency modulation of body waves to improve performance of sidewinding robots. International Journal of Robotics Research, 2021, 40, 1547-1562.	5.8	16
20	Subdimensional Expansion for Multi-Objective Multi-Agent Path Finding. IEEE Robotics and Automation Letters, 2021, 6, 7153-7160.	3.3	8
21	Autonomous Decentralized Shape-Based Navigation for Snake Robots in Dense Environments. , 2021, , .		3
22	Exploring Large and Complex Environments Fast and Efficiently., 2021,,.		14
23	Visual-Laser-Inertial SLAM Using a Compact 3D Scanner for Confined Space., 2021,,.		5
24	Multi-objective Conflict-based Search for Multi-agent Path Finding. , 2021, , .		7
25	3D Segmentation Learning From Sparse Annotations and Hierarchical Descriptors. IEEE Robotics and Automation Letters, 2021, 6, 5953-5960.	3.3	3
26	Geometric Motion Planning for a System on the Cylindrical Surface., 2021,,.		1
27	Toward Robotically Automated Femoral Vascular Access. , 2021, , .		6
28	Communication Learning via Backpropagation in Discrete Channels with Unknown Noise. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 7160-7168.	3.6	4
29	Directional Compliance in Obstacle-Aided Navigation for Snake Robots. , 2020, , .		17
30	A Compact and Infrastructure-free Confined Space Sensor for 3D Scanning and SLAM., 2020,,.		4
31	Surprising simplicities and syntheses in limbless self-propulsion in sand. Journal of Experimental Biology, 2020, 223, .	0.8	29
32	Simultaneous Policy and Discrete Communication Learning for Multi-Agent Cooperation. IEEE Robotics and Automation Letters, 2020, 5, 2498-2505.	3.3	6
33	Locomotion of a multi-link non-holonomic snake robot with passive joints. International Journal of Robotics Research, 2020, 39, 598-616.	5.8	13
34	Sparse Discrete Communication Learning for Multi-Agent Cooperation Through Backpropagation. , 2020, , .		6
35	A Tunable Magnet-based Tactile Sensor Framework. , 2020, , .		5
36	SeqSphereVLAD: Sequence Matching Enhanced Orientation-invariant Place Recognition., 2020,,.		12

#	Article	IF	Citations
37	Distributed Learning of Decentralized Control Policies for Articulated Mobile Robots. IEEE Transactions on Robotics, 2019, 35, 1109-1122.	7.3	40
38	Distributed Reinforcement Learning for Multi-robot Decentralized Collective Construction. Springer Proceedings in Advanced Robotics, 2019, , 35-49.	0.9	41
39	Registration with a small number of sparse measurements. International Journal of Robotics Research, 2019, 38, 1403-1419.	5.8	8
40	PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning. IEEE Robotics and Automation Letters, 2019, 4, 2378-2385.	3.3	149
41	Task-Specific Manipulator Design and Trajectory Synthesis. IEEE Robotics and Automation Letters, 2019, 4, 301-308.	3.3	14
42	Shape-based coordination in locomotion control. International Journal of Robotics Research, 2018, 37, 1253-1268.	5.8	35
43	Distributed Learning for the Decentralized Control of Articulated Mobile Robots. , 2018, , .		10
44	Snake Robot Urban Search After the 2017 Mexico City Earthquake. , 2018, , .		49
45	Central Pattern Generator With Inertial Feedback for Stable Locomotion and Climbing in Unstructured Terrain. , 2018, , .		22
46	Proprioceptive-Inertial Autonomous Locomotion for Articulated Robots., 2018,,.		6
47	Geometric Motion Planning for a Three-Link Swimmer in a Three-Dimensional low Reynolds-Number Regime. , 2018, , .		8
48	Probabilistic pose estimation using a Bingham distribution-based linear filter. International Journal of Robotics Research, 2018, 37, 1610-1631.	5.8	21
49	Kinematic Cartography and the Efficiency of Viscous Swimming. IEEE Transactions on Robotics, 2017, 33, 523-535.	7.3	14
50	Utility-Guided Palpation for Locating Tissue Abnormalities. IEEE Robotics and Automation Letters, 2017, 2, 864-871.	3.3	17
51	Control and locomotion of hydrodynamically coupled rigid spheres. , 2017, , .		О
52	Ergodic coverage in constrained environments using stochastic trajectory optimization., 2017,,.		31
53	Using Bayesian optimization to guide probing of a flexible environment for simultaneous registration and stiffness mapping. , $2016, \ldots$		23
54	Complementary model update: A method for simultaneous registration and stiffness mapping in flexible environments. , 2016 , , .		19

#	Article	IF	Citations
55	Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science, 2016, 353, 154-158.	6.0	78
56	A physical parameter-based skidding model for the snakeboard. , 2016, , .		3
57	Multirobot sequential composition., 2016,,.		0
58	Optimal control for geometric motion planning of a robot diver. , 2016, , .		4
59	Shape-based compliant control with variable coordination centralization on a snake robot. , 2016, , .		17
60	Science for robotics and robotics for science. Science Robotics, 2016, 1, .	9.9	27
61	Locomotive analysis of a single-input three-link snake robot. , 2016, , .		6
62	A dynamical systems approach to obstacle navigation for a series-elastic hexapod robot., 2016,,.		7
63	A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Reports on Progress in Physics, 2016, 79, 110001.	8.1	197
64	Pipe Network Locomotion with a Snake Robot. Journal of Field Robotics, 2016, 33, 322-336.	3.2	76
65	Kinematic gait synthesis for snake robots. International Journal of Robotics Research, 2016, 35, 100-113.	5.8	45
66	Locomotive reduction for snake robots. , 2015, , .		13
67	Shape-constrained whole-body adaptivity. , 2015, , .		9
68	Constraint Manifold Subsearch for multirobot path planning with cooperative tasks. , 2015, , .		1
69	Intelligent Surgical Robots with Situational Awareness. Mechanical Engineering, 2015, 137, S3-S6.	0.0	8
70	Continuum Robots for Medical Applications: A Survey. IEEE Transactions on Robotics, 2015, 31, 1261-1280.	7.3	1,005
71	Gaussian reconstruction of swarm behavior from partial data. , 2015, , .		8
72	Modeling rolling gaits of a snake robot. , 2015, , .		16

#	Article	IF	Citations
73	A Novel, New Robotic Platform for Natural Orifice Distal Pancreatectomy. Surgical Innovation, 2015, 22, 274-282.	0.4	18
74	Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6200-6205.	3.3	78
75	Mobile manufacturing of large structures. , 2015, , .		8
76	Subdimensional expansion for multirobot path planning. Artificial Intelligence, 2015, 219, 1-24.	3.9	202
77	Expensive multiobjective optimization for robotics with consideration of heteroscedastic noise. , 2014, , .		5
78	Nonlinear dimensionality reduction for kinematic cartography with an application toward robotic locomotion. , $2014, \ldots$		3
79	Design and architecture of a series elastic snake robot. , 2014, , .		74
80	Using Lie algebra for shape estimation of medical snake robots. , 2014, , .		11
81	Torque control strategies for snake robots. , 2014, , .		24
82	Visual sensing for developing autonomous behavior in snake robots. , 2014, , .		26
83	Guided locomotion in 3D for snake robots based on contact force optimization. , 2014, , .		1
84	Design and Open-Loop Control of the ParkourBot, a Dynamic Climbing Robot. IEEE Transactions on Robotics, 2014, 30, 705-718.	7.3	15
85	Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science, 2014, 346, 224-229.	6.0	209
86	Fourth Biennial North American Summer School on Surgical Robotics [Education]. IEEE Robotics and Automation Magazine, 2014, 21, 128-129.	2,2	0
87	Multiobjective Optimization Based on Response Surface Methodology with Consideration of Input Dependent Noise. Transactions of the Society of Instrument and Control Engineers, 2014, 50, 792-800.	0.1	0
88	Expensive multiobjective optimization for robotics., 2013,,.		25
89	Geometric Swimming at Low and High Reynolds Numbers. IEEE Transactions on Robotics, 2013, 29, 615-624.	7.3	53
90	Geometric Visualization of Self-Propulsion in a Complex Medium. Physical Review Letters, 2013, 110, 078101.	2.9	63

#	Article	IF	CITATIONS
91	ODrM* optimal multirobot path planning in low dimensional search spaces. , 2013, , .		24
92	Gait-based compliant control for snake robots. , 2013, , .		29
93	Snakes on a plan: Toward combining planning and control. , 2013, , .		21
94	Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope, 2013, 123, 1168-1172.	1.1	67
95	Monocular feature-based periodic motion estimation for surgical guidance. , 2013, , .		0
96	Motion estimation of snake robots in straight pipes. , 2013, , .		28
97	A unified Bayesian framework for global localization and SLAM in hybrid metric/topological maps. International Journal of Robotics Research, 2012, 31, 271-288.	5.8	27
98	Using kinesthetic input to overcome obstacles with snake robots., 2012,,.		3
99	Conical sidewinding. , 2012, , .		16
100	Probabilistic path planning for multiple robots with subdimensional expansion., 2012,,.		45
101	Multi-agent deterministic graph mapping via robot rendezvous. , 2012, , .		8
102	Virtual Chassis for Snake Robots: Definition and Applications. Advanced Robotics, 2012, 26, 2043-2064.	1.1	25
103	Simplified motion modeling for snake robots. , 2012, , .		25
104	A transoral highly flexible robot. Laryngoscope, 2012, 122, 1067-1071.	1,1	71
105	The ParkourBot - a dynamic BowLeg climbing robot. , 2011, , .		14
106	Geometric motion planning: The local connection, Stokes' theorem, and the importance of coordinate choice. International Journal of Robotics Research, 2011, 30, 988-1014.	5.8	89
107	Virtual chassis for snake robots. , 2011, , .		29
108	Context Identification for Efficient Multiple-Model State Estimation of Systems With Cyclical Intermittent Dynamics. IEEE Transactions on Robotics, 2011, 27, 14-28.	7.3	5

#	Article	IF	CITATIONS
109	DTAR—A Dynamic, Tube-Ascending Robot. IEEE Transactions on Robotics, 2011, 27, 360-364.	7.3	4
110	Integrating planning and control forÂsingle-bodied wheeled mobile robots. Autonomous Robots, 2011, 30, 243-264.	3.2	18
111	Using response surfaces and expected improvement to optimize snake robot gait parameters. , 2011, , .		55
112	State estimation for snake robots., 2011,,.		12
113	Incremental construction of the saturated-GVG for multi-hypothesis topological SLAM. , 2011, , .		7
114	Adapting control policies for expensive systems to changing environments. , 2011, , .		15
115	Shape estimation for image-guided surgery with a highly articulated snake robot., 2011,,.		33
116	Inequality constrained Kalman filtering for the localization and registration of a surgical robot. , $2011, , .$		10
117	M*: A complete multirobot path planning algorithm with performance bounds. , 2011, , .		128
118	Shape and location design of supporting legs for a new Water Strider Robot. , 2011, , .		3
119	Monte Carlo Localization and registration to prior data for outdoor navigation. , 2011, , .		1
120	Virtual chassis for snake robots. , 2011, , .		1
121	LTL-based decentralized supervisory control of multi-robot tasks modelled as Petri nets., 2011,,.		1
122	Using response surfaces and expected improvement to optimize snake robot gait parameters. , 2011, , .		4
123	State estimation and feedforward tremor suppression for a handheld micromanipulator with a Kalman filter. , $2011, $		0
124	Generating gaits for snake robots: annealed chain fitting andÂkeyframe wave extraction. Autonomous Robots, 2010, 28, 271-281.	3.2	86
125	Minimalistic, dynamic, tube climbing robot. , 2010, , .		9
126	DSAC - Dynamic, Single Actuated Climber: Local stability and bifurcations. , 2010, , .		14

#	Article	IF	CITATIONS
127	A multi-hypothesis topological SLAM approach for loop closing on edge-ordered graphs. , 2009, , .		16
128	A Highly Articulated Robotic Surgical System for Minimally Invasive Surgery. Annals of Thoracic Surgery, 2009, 87, 1253-1256.	0.7	105
129	Topological SLAM using neighbourhood information of places. , 2009, , .		9
130	Flow-Through Policies for Hybrid Controller Synthesis Applied to Fully Actuated Systems. IEEE Transactions on Robotics, 2009, 25, 136-146.	7.3	30
131	Parameterized and Scripted Gaits for Modular Snake Robots. Advanced Robotics, 2009, 23, 1131-1158.	1.1	194
132	Efficient Boustrophedon Multi-Robot Coverage: an algorithmic approach. Annals of Mathematics and Artificial Intelligence, 2008, 52, 109-142.	0.9	151
133	Courteous Cars. IEEE Robotics and Automation Magazine, 2008, 15, 30-38.	2.2	40
134	Iterated filters for bearing-only SLAM., 2008,,.		24
135	An optimization approach to planning for mobile manipulation. , 2008, , .		58
136	Context identification for efficient multiple-model state estimation. , 2007, , .		0
137	Hybrid localization using the hierarchical atlas. , 2007, , .		19
138	Valet parking without a valet. , 2007, , .		55
139	Towards a Unified Approach to Motion Planning for Dynamic Underactuated Mechanical Systems with Non-holonomic Constraints. International Journal of Robotics Research, 2007, 26, 1075-1124.	5.8	44
140	Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems. International Journal of Robotics Research, 2007, 26, 1043-1073.	5.8	75
141	Design of a modular snake robot. , 2007, , .		167
142	A dynamic single actuator vertical climbing robot. , 2007, , .		16
143	Frictional Compliance Model Development and Experiments for Snake Robot Climbing. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	16
144	Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe via a Percutaneous Subxiphoid Approach. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2006, 1, 335-340.	0.4	0

#	Article	IF	CITATIONS
145	Three degrees-of-freedom joint for spatial hyper-redundant robots. Mechanism and Machine Theory, 2006, 41, 170-190.	2.7	44
146	Relative localization using path odometry information. Autonomous Robots, 2006, 21, 143-154.	3.2	37
147	A potential function approach to surface coverage for a surgical robot. Computer Aided Surgery, 2006, 11, 1-9.	1.8	1
148	Survey on Urban Search and Rescue Robots. Journal of the Robotics Society of Japan, 2004, 22, 582-586.	0.0	40
149	Morse Decompositions for Coverage Tasks. International Journal of Robotics Research, 2002, 21, 331-344.	5.8	223
150	Sensor-based Coverage of Unknown Environments: Incremental Construction of Morse Decompositions. International Journal of Robotics Research, 2002, 21, 345-366.	5.8	126
151	Coverage for robotics – A survey of recent results. Annals of Mathematics and Artificial Intelligence, 2001, 31, 113-126.	0.9	892
152	Coverage of Known Spaces: The Boustrophedon Cellular Decomposition. Autonomous Robots, 2000, 9, 247-253.	3.2	340
153	Editorial: Special Issue on Field and Service Robotics. International Journal of Robotics Research, 2000, 19, 971-971.	5.8	0
154	Shape-Based Compliance in Locomotion. , 0, , .		20
155	Coordination of back bending and leg movements for quadrupedal locomotion. , 0, , .		33
156	Frequency Modulation of Body Waves to Improve Performance of Limbless Robots. , 0, , .		1