
Shirley Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997720/publications.pdf Version: 2024-02-01

SHIDLEV YAN

#	Article	IF	CITATIONS
1	Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer's disease. Human Molecular Genetics, 2022, 31, 2498-2507.	2.9	25
2	Age-dependent accumulation of dicarbonyls and advanced glycation endproducts (AGEs) associates with mitochondrial stress. Free Radical Biology and Medicine, 2021, 164, 429-438.	2.9	33
3	Gain of PITRM1 peptidase in cortical neurons affords protection of mitochondrial and synaptic function in an advanced age mouse model of Alzheimer's disease. Aging Cell, 2021, 20, e13368.	6.7	6
4	PINK1 Activation Attenuates Impaired Neuronal-Like Differentiation and Synaptogenesis and Mitochondrial Dysfunction in Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. Journal of Alzheimer's Disease, 2021, 81, 1749-1761.	2.6	11
5	High Dietary Advanced Glycation End Products Impair Mitochondrial and Cognitive Function. Journal of Alzheimer's Disease, 2020, 76, 165-178.	2.6	33
6	Anxiety and task performance changes in an aging mouse model. Biochemical and Biophysical Research Communications, 2019, 514, 246-251.	2.1	17
7	Astrocytes Attenuate Mitochondrial Dysfunctions in Human Dopaminergic Neurons Derived from iPSC. Stem Cell Reports, 2018, 10, 366-374.	4.8	43
8	RAGE mediates Aβ accumulation in a mouse model of Alzheimer's disease via modulation of β- and γ-secretase activity. Human Molecular Genetics, 2018, 27, 1002-1014.	2.9	62
9	Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's disease. Nature Communications, 2018, 9, 2968.	12.8	37
10	Mitochondrial permeability transition pore: a potential drug target for neurodegeneration. Drug Discovery Today, 2018, 23, 1983-1989.	6.4	77
11	Identification and Characterization of Amyloid-β Accumulation in Synaptic Mitochondria. Methods in Molecular Biology, 2018, 1779, 415-433.	0.9	9
12	Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer's disease mouse model. Scientific Reports, 2017, 7, 42370.	3.3	64
13	Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. Journal of Alzheimer's Disease, 2017, 59, 223-239.	2.6	38
14	PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain, 2017, 140, 3233-3251.	7.6	211
15	Increased Electron Paramagnetic Resonance Signal Correlates with Mitochondrial Dysfunction and Oxidative Stress in an Alzheimer's disease Mouse Brain. Journal of Alzheimer's Disease, 2016, 51, 571-580.	2.6	36
16	Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs. Stem Cell Reports, 2016, 7, 678-692.	4.8	30
17	F1F0 ATP Synthase–Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes, 2016, 65, 3482-3494.	0.6	41
18	Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Scientific Reports, 2016, 6, 31462.	3.3	74

SHIRLEY YAN

#	Article	IF	CITATIONS
19	Antioxidants Rescue Mitochondrial Transport in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. Journal of Alzheimer's Disease, 2016, 54, 679-690.	2.6	32
20	ldentification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. ACS Medicinal Chemistry Letters, 2016, 7, 294-299.	2.8	38
21	Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC Cancer, 2015, 15, 166.	2.6	19
22	NR2B-dependent cyclophilin D translocation suppresses the recovery of synaptic transmission after oxygen–glucose deprivation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2225-2234.	3.8	9
23	Increased neuronal PreP activity reduces AÎ ² accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Human Molecular Genetics, 2015, 24, 5198-5210.	2.9	70
24	Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction. Biochemical and Biophysical Research Communications, 2015, 468, 719-725.	2.1	47
25	Drp1-Mediated Mitochondrial Abnormalities Link to Synaptic Injury in Diabetes Model. Diabetes, 2015, 64, 1728-1742.	0.6	121
26	Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology, 2015, 89, 175-184.	4.1	80
27	Determination of Small Molecule ABAD Inhibitors Crossing Blood-Brain Barrier and Pharmacokinetics. Journal of Alzheimer's Disease, 2014, 42, 333-344.	2.6	11
28	Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radical Biology and Medicine, 2014, 75, 230-240.	2.9	55
29	RAGE Inhibition in Microglia Prevents Ischemia-Dependent Synaptic Dysfunction in an Amyloid-Enriched Environment. Journal of Neuroscience, 2014, 34, 8749-8760.	3.6	47
30	High-resolution crystal structures of two crystal forms of human cyclophilin D in complex with PEG 400 molecules. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 717-722.	0.8	5
31	Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 76, 506-516.	5.5	25
32	Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 220-231.	3.8	151
33	Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1267-1272.	3.8	232
34	Synergistic Exacerbation of Mitochondrial and Synaptic Dysfunction and Resultant Learning and Memory Deficit in a Mouse Model of Diabetic Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 451-463.	2.6	30
35	Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2517-2527.	3.8	73
36	The potential role of damage-associated molecular patterns derived from mitochondria in osteocyte apoptosis and bone remodeling. Bone, 2014, 62, 67-68.	2.9	11

SHIRLEY YAN

#	Article	IF	CITATIONS
37	From a cell's viewpoint: targeting mitochondria in Alzheimer's disease. Drug Discovery Today: Therapeutic Strategies, 2013, 10, e91-e98.	0.5	4
38	RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer's disease. Frontiers in Bioscience - Scholar, 2012, S4, 240.	2.1	41
39	Unlocking the Door to Neuronal Woes in Alzheimer's Disease: Aβ and Mitochondrial Permeability Transition Pore. Pharmaceuticals, 2010, 3, 1936-1948.	3.8	12