List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
2	Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB Journal, 2004, 18, 1692-1700.	0.5	673
3	The Randle cycle revisited: a new head for an old hat. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E578-E591.	3.5	578
4	Metabolic Gene Expression in Fetal and Failing Human Heart. Circulation, 2001, 104, 2923-2931.	1.6	535
5	Adaptation and Maladaptation of the Heart in Diabetes: Part I. Circulation, 2002, 105, 1727-1733.	1.6	477
6	Adaptation and Maladaptation of the Heart in Diabetes: Part II. Circulation, 2002, 105, 1861-1870.	1.6	423
7	The Society of Thoracic Surgeons Practice Guideline Series: Blood Glucose Management During Adult Cardiac Surgery. Annals of Thoracic Surgery, 2009, 87, 663-669.	1.3	416
8	Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nature Medicine, 1998, 4, 1269-1275.	30.7	394
9	Glucose for the Heart. Circulation, 1999, 99, 578-588.	1.6	374
10	Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Failure Reviews, 2007, 12, 331-343.	3.9	364
11	Epidemic Obesity and the Metabolic Syndrome. Circulation, 2003, 108, 1541-1545.	1.6	357
12	Return to the fetal gene program. Annals of the New York Academy of Sciences, 2010, 1188, 191-198.	3.8	345
13	The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling. Journal of Biological Chemistry, 2005, 280, 20814-20823.	3.4	308
14	Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. Journal of Clinical Investigation, 2002, 109, 629-639.	8.2	297
15	Regulation of Energy Metabolism of the Heart during Acute Increase in Heart Work. Journal of Biological Chemistry, 1998, 273, 29530-29539.	3.4	275
16	Impaired Long-Chain Fatty Acid Oxidation and Contractile Dysfunction in the Obese Zucker Rat Heart. Diabetes, 2002, 51, 2587-2595.	0.6	263
17	Reactivation of Peroxisome Proliferator-activated Receptor α Is Associated with Contractile Dysfunction in Hypertrophied Rat Heart. Journal of Biological Chemistry, 2001, 276, 44390-44395.	3.4	230
18	Clock Genes in the Heart. Circulation Research, 2001, 88, 1142-1150.	4.5	229

#	Article	IF	CITATIONS
19	Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. Journal of the American College of Cardiology, 1985, 6, 864-870.	2.8	217
20	Uncoupling protein 3 transcription is regulated by peroxisome proliferatorâ€activated receptor α in the adult rodent heart. FASEB Journal, 2001, 15, 833-845.	0.5	217
21	Linking Gene Expression to Function: Metabolic Flexibility in the Normal and Diseased Heart. Annals of the New York Academy of Sciences, 2004, 1015, 202-213.	3.8	213
22	Assessing Cardiac Metabolism. Circulation Research, 2016, 118, 1659-1701.	4.5	211
23	Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. Journal of Clinical Investigation, 2002, 109, 629-639.	8.2	194
24	Streptozotocin-induced Changes in Cardiac Gene Expression in the Absence of Severe Contractile Dysfunction. Journal of Molecular and Cellular Cardiology, 2000, 32, 985-996.	1.9	184
25	Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation. Journal of Bacteriology, 2017, 199, .	2.2	179
26	Recruitment of Compensatory Pathways to Sustain Oxidative Flux With Reduced Carnitine Palmitoyltransferase I Activity Characterizes Inefficiency in Energy Metabolism in Hypertrophied Hearts. Circulation, 2007, 115, 2033-2041.	1.6	172
27	Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 2018, 39, 4243-4254.	2.2	171
28	Coronary Microvascular Pericytes Are the Cellular Target of Sunitinib Malate–Induced Cardiotoxicity. Science Translational Medicine, 2013, 5, 187ra69.	12.4	162
29	Alterations of the Circadian Clock in the Heart by Streptozotocin-induced Diabetes. Journal of Molecular and Cellular Cardiology, 2002, 34, 223-231.	1.9	156
30	Mouse Cardiac Acyl Coenzyme A Synthetase 1 Deficiency Impairs Fatty Acid Oxidation and Induces Cardiac Hypertrophy. Molecular and Cellular Biology, 2011, 31, 1252-1262.	2.3	156
31	Cardiac Metabolism as a Target for the Treatment of Heart Failure. Circulation, 2004, 110, 894-896.	1.6	154
32	Markers of Autophagy Are Downregulated in Failing Human Heart After Mechanical Unloading. Circulation, 2009, 120, S191-7.	1.6	146
33	Substrate–Enzyme Competition Attenuates Upregulated Anaplerotic Flux Through Malic Enzyme in Hypertrophied Rat Heart and Restores Triacylglyceride Content. Circulation Research, 2009, 104, 805-812.	4.5	143
34	Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochemical Journal, 2007, 406, 457-467.	3.7	135
35	Downregulation of Myocardial Myocyte Enhancer Factor 2C and Myocyte Enhancer Factor 2C–Regulated Gene Expression in Diabetic Patients With Nonischemic Heart Failure. Circulation, 2002, 106, 407-411.	1.6	132
36	Micronutrient Deficiencies. Journal of the American College of Cardiology, 2009, 54, 1660-1673.	2.8	127

#	Article	IF	CITATIONS
37	Improved Cardiac Function With Glucose-Insulin-Potassium After Aortocoronary Bypass Grafting. Annals of Thoracic Surgery, 1989, 48, 484-489.	1.3	120
38	Downregulation of Metabolic Gene Expression in Failing Human Heart before and after Mechanical Unloading. Cardiology, 2002, 97, 203-209.	1.4	111
39	Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovascular Research, 2000, 45, 538-548.	3.8	108
40	Atrophic Remodeling of the Heart In Vivo Simultaneously Activates Pathways of Protein Synthesis and Degradation. Circulation, 2003, 108, 2536-2541.	1.6	108
41	Glucose Regulation of Loadâ€Induced mTOR Signaling and ER Stress in Mammalian Heart. Journal of the American Heart Association, 2013, 2, e004796.	3.7	108
42	Substrate Metabolism as a Determinant for Postischemic Functional Recovery of the Heart. American Journal of Cardiology, 1997, 80, 3A-10A.	1.6	105
43	Improved energy homeostasis of the heart in the metabolic state of exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H1490-H1501.	3.2	105
44	Oncometabolite <scp>d</scp> -2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10436-10441.	7.1	105
45	Metabolic Energetics and Genetics in the Heart. Annals of the New York Academy of Sciences, 2005, 1047, 208-218.	3.8	103
46	Hypoxia in Vivo Decreases Peroxisome Proliferator-Activated Receptor α-Regulated Gene Expression in Rat Heart. Biochemical and Biophysical Research Communications, 2001, 287, 5-10.	2.1	102
47	Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochemical and Biophysical Research Communications, 2006, 342, 361-364.	2.1	99
48	Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E471-E479.	3.5	95
49	Downregulation of Peroxisome Proliferator–Activated Receptor-α Gene Expression in a Mouse Model of Ischemic Cardiomyopathy Is Dependent on Reactive Oxygen Species and Prevents Lipotoxicity. Circulation, 2005, 112, 407-415.	1.6	95
50	Fundamental Limitations of [¹⁸ F]2-Deoxy-2-Fluoro- <scp>d</scp> -Glucose for Assessing Myocardial Glucose Uptake. Circulation, 1995, 91, 2435-2444.	1.6	95
51	Switching Metabolic Genes to Build a Better Heart. Circulation, 2002, 106, 2043-2045.	1.6	94
52	Adaptation and Maladaptation of the Heart in Obesity. Hypertension, 2008, 52, 181-187.	2.7	92
53	Activation of PPARÎ ³ enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E328-E336.	3.5	91
54	Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology, 2017, 65, 189-201.	7.3	88

#	Article	IF	CITATIONS
55	Ventricular reconditioning and pump explantation in patients supported by continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2015, 34, 766-772.	0.6	87
56	Dramatic Reversal of Derangements in Muscle Metabolism and Left Ventricular Function After Bariatric Surgery. American Journal of Medicine, 2008, 121, 966-973.	1.5	86
57	Transcriptional adaptation of the heart to mechanical unloading. American Journal of Cardiology, 1999, 83, 58-63.	1.6	85
58	Matrix Revisited. Circulation Research, 2014, 114, 717-729.	4.5	85
59	Body Weight, Insulin Resistance, and Serum Adipokine Levels 2 Years after 2 Types of Bariatric Surgery. American Journal of Medicine, 2009, 122, 435-442.	1.5	84
60	A PKM2 signature in the failing heart. Biochemical and Biophysical Research Communications, 2015, 459, 430-436.	2.1	78
61	Degree of cardiac fibrosis and hypertrophy at time of implantation predicts myocardial improvement during left ventricular assist device support. Journal of Heart and Lung Transplantation, 2004, 23, 36-42.	0.6	76
62	Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovascular Research, 2007, 76, 71-80.	3.8	76
63	Remodeling of Glucose Metabolism Precedes Pressure Overload-Induced Left Ventricular Hypertrophy: Review of a Hypothesis. Cardiology, 2015, 130, 211-220.	1.4	75
64	Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism: Clinical and Experimental, 2001, 50, 1083-1090.	3.4	74
65	Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart. Molecular and Cellular Biochemistry, 2010, 344, 221-230.	3.1	74
66	Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1693-H1697.	3.2	74
67	Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1239-H1247.	3.2	72
68	Progressive Regression of Left Ventricular Hypertrophy Two Years after Bariatric Surgery. American Journal of Medicine, 2010, 123, 549-555.	1.5	70
69	Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1185-H1192.	3.2	69
70	Insulin improves functional and metabolic recovery of reperfused working rat heart. Annals of Thoracic Surgery, 1999, 67, 1682-1688.	1.3	68
71	Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity. American Journal of Clinical Nutrition, 2006, 84, 336-341.	4.7	66
72	Proposed Regulation of Gene Expression by Glucose in Rodent Heart. Gene Regulation and Systems Biology, 2007, 1, GRSB.S222.	2.3	65

#	Article	IF	CITATIONS
73	AMP-Activated Protein Kinase Regulates E3 Ligases in Rodent Heart. Circulation Research, 2011, 109, 1153-1161.	4.5	65
74	Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. American Journal of Cardiology, 1998, 82, 54K-60K.	1.6	62
75	Imaging myocardial metabolism and ischemic memory. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, S42-S48.	3.3	60
76	Left ventricular unloading alters receptor tyrosine kinase expression in the failing human heart. Journal of Heart and Lung Transplantation, 2002, 21, 771-782.	0.6	59
77	Metabolic Changes in Spontaneously Hypertensive Rat Hearts Precede Cardiac Dysfunction and Left Ventricular Hypertrophy. Journal of the American Heart Association, 2019, 8, e010926.	3.7	59
78	Ménage-Ã-Trois 1 Is Critical for the Transcriptional Function of PPARÎ ³ Coactivator 1. Cell Metabolism, 2007, 5, 129-142.	16.2	56
79	Tracing Cardiac Metabolism In Vivo: One Substrate at a Time. Journal of Nuclear Medicine, 2010, 51, 80S-87S.	5.0	55
80	Targeting the Ubiquitin-Proteasome System in Heart Disease: The Basis for New Therapeutic Strategies. Antioxidants and Redox Signaling, 2014, 21, 2322-2343.	5.4	55
81	Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nature Communications, 2015, 6, 8245.	12.8	55
82	Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165579.	3.8	55
83	Quantitative PET Imaging Detects Early Metabolic Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy In Vivo. Journal of Nuclear Medicine, 2013, 54, 609-615.	5.0	54
84	α-Adrenergic Stimulation Mediates Glucose Uptake Through Phosphatidylinositol 3-Kinase in Rat Heart. Circulation Research, 1999, 84, 467-474.	4.5	53
85	Improvements in systemic metabolism, anthropometrics, and left ventricular geometry 3 months after bariatric surgery. Surgery for Obesity and Related Diseases, 2006, 2, 592-599.	1.2	52
86	Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. Journal of Molecular and Cellular Cardiology, 2017, 110, 80-95.	1.9	52
87	Decreased longâ€chain fatty acid oxidation impairs postischemic recovery of the insulinâ€resistant rat heart. FASEB Journal, 2013, 27, 3966-3978.	0.5	50
88	Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E772-E777.	3.5	49
89	Genetics of Energetics: Transcriptional Responses in Cardiac Metabolism. Annals of Biomedical Engineering, 2000, 28, 871-876.	2.5	49
90	Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. Journal of Molecular and Cellular Cardiology, 2014, 68, 98-105.	1.9	49

#	Article	IF	CITATIONS
91	Taking pressure off the heart: the ins and outs of atrophic remodelling. Cardiovascular Research, 2011, 90, 243-250.	3.8	48
92	Too much or not enough of a good thing — The Janus faces of autophagy in cardiac fuel and protein homeostasis. Journal of Molecular and Cellular Cardiology, 2015, 84, 223-226.	1.9	48
93	Hypoxia-induced switches of myosin heavy chain iso-gene expression in rat heart. Biochemical and Biophysical Research Communications, 2003, 303, 1024-1027.	2.1	47
94	<scp>TGR</scp> 5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressureâ€induced stress in mice. Cardiovascular Therapeutics, 2018, 36, e12462.	2.5	46
95	Intracellular sodium elevation reprograms cardiac metabolism. Nature Communications, 2020, 11, 4337.	12.8	44
96	Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity1–3. American Journal of Clinical Nutrition, 2006, 84, 336-341.	4.7	43
97	Atrophic Remodeling of the Transplanted Rat Heart. Cardiology, 2006, 105, 128-136.	1.4	41
98	More Than Bricks and Mortar: Comments on Protein and Amino Acid Metabolism in the Heart. American Journal of Cardiology, 2008, 101, S3-S7.	1.6	41
99	[5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E502-E508.	3.5	40
100	Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB Journal, 2012, 26, 3118-3126.	0.5	40
101	Cardioprotection by Controlling Hyperamylinemia in a "Humanized―Diabetic Rat Model. Journal of the American Heart Association, 2014, 3, .	3.7	40
102	Metabolic Reserve of the Heart: The Forgotten Link Between Contraction and Coronary Flow. Progress in Cardiovascular Diseases, 2008, 51, 74-88.	3.1	39
103	Nonischemic heart failure in diabetes mellitus. Current Opinion in Cardiology, 2008, 23, 241-248.	1.8	39
104	Profound Underestimation of Glucose Uptake by [¹⁸ F]2-Deoxy-2-fluoroglucose in Reperfused Rat Heart Muscle. Circulation, 1998, 97, 2454-2462.	1.6	38
105	Glucose 6-Phosphate Accumulates via Phosphoglucose Isomerase Inhibition in Heart Muscle. Circulation Research, 2020, 126, 60-74.	4.5	38
106	Glycogen in the heart?an expanded view. Journal of Molecular and Cellular Cardiology, 2004, 37, 7-10.	1.9	36
107	Acclimatization to chronic hypobaric hypoxia is associated with a differential transcriptional profile between the right and left ventricle. Molecular and Cellular Biochemistry, 2005, 278, 71-78.	3.1	36
108	Mechanical unloading of the heart activates the calpain system. Journal of Molecular and Cellular Cardiology, 2007, 42, 449-452.	1.9	36

HEINRICH TAEGTMEYER

#	Article	IF	CITATIONS
109	Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. Journal of Lipid Research, 2010, 51, 1380-1393.	4.2	36
110	Hypertrophy and Atrophy of the Heart: The Other Side of Remodeling. Annals of the New York Academy of Sciences, 2006, 1080, 110-119.	3.8	35
111	Non-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population. Frontiers in Immunology, 2019, 10, 634.	4.8	35
112	Too much or not enough of a good thing? Cardiac glucolipotoxicity versus lipoprotection. Journal of Molecular and Cellular Cardiology, 2011, 50, 2-5.	1.9	34
113	Mechanical Unloading of the Failing Human Heart Fails to Activate the Protein Kinase B/Akt/Glycogen Synthase Kinase-3β Survival Pathway. Cardiology, 2003, 100, 17-22.	1.4	33
114	PPAR-Î ³ agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H77-H82.	3.2	33
115	Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H256-H265.	3.2	33
116	Bariatric surgery to unload the stressed heart: a metabolic hypothesis. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1539-H1545.	3.2	32
117	Failing Heart and Starving Brain. Circulation, 2016, 134, 265-266.	1.6	32
118	Noninvasive Detection of Early Metabolic Left Ventricular Remodeling in Systemic Hypertension. Cardiology, 2016, 133, 157-162.	1.4	32
119	Reverse Remodeling of the Failing Human Heart with Mechanical Unloading. Cardiology, 2002, 98, 167-174.	1.4	31
120	Increased Myocardial Susceptibility to Repetitive Ischemia With Highâ€fat dietâ€induced Obesit. Obesity, 2008, 16, 2593-2600.	3.0	31
121	Mitochondrial Proteins In Hypertrophy And Atrophy: A Transcript Analysis In Rat Heart. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 346-350.	1.9	29
122	The complexities of diabetic cardiomyopathy: Lessons from patients and animal models. Current Diabetes Reports, 2008, 8, 243-248.	4.2	28
123	Cardiac Metabolism in Perspective. , 2016, 6, 1675-1699.		28
124	Metabolic Adaptation Follows Contractile Dysfunction in the Heart of Obese Zucker Rats Fed a Highâ€Fat "Western―Diet. Obesity, 2010, 18, 1895-1901.	3.0	27
125	Targeted Metabolic Imaging to Improve the Management of Heart Disease. JACC: Cardiovascular Imaging, 2012, 5, 214-226.	5.3	25
126	Rethinking cardiac metabolism: metabolic cycles to refuel and rebuild the failing heart. F1000prime Reports, 2014, 6, 90.	5.9	25

#	Article	IF	CITATIONS
127	Protein degradation and amino acid metabolism in autolyzing rabbit myocardium. Experimental and Molecular Pathology, 1977, 26, 52-62.	2.1	23
128	Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E977-E982.	3.5	23
129	MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart. Journal of Molecular and Cellular Cardiology, 2014, 72, 168-176.	1.9	23
130	Cardiac Remodeling. Circulation Research, 2005, 97, 964-966.	4.5	22
131	SRC-2 Coactivator Deficiency Decreases Functional Reserve in Response to Pressure Overload of Mouse Heart. PLoS ONE, 2012, 7, e53395.	2.5	22
132	Chronic Hyperinsulinemia Causes Selective Insulin Resistance and Down-regulates Uncoupling Protein 3 (UCP3) through the Activation of Sterol Regulatory Element-binding Protein (SREBP)-1 Transcription Factor in the Mouse Heart. Journal of Biological Chemistry, 2015, 290, 30947-30961.	3.4	22
133	Actionable Metabolic Pathways in Heart Failure and Cancer—Lessons From Cancer Cell Metabolism. Frontiers in Cardiovascular Medicine, 2018, 5, 71.	2.4	19
134	Lack of NF-κB1 (p105/p50) attenuates unloading-induced downregulation of PPARα and PPARα-regulated gene expression in rodent heart. Cardiovascular Research, 2007, 74, 133-139.	3.8	18
135	Metformin in Diabetic Patients with Heart Failure: Safe and Effective. Current Cardiovascular Risk Reports, 2013, 7, 417-422.	2.0	18
136	Metabolic remodeling precedes mTORC1-mediated cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 158, 115-127.	1.9	18
137	Transcriptional regulators of ribosomal biogenesis are increased in the unloaded heart. FASEB Journal, 2006, 20, 1090-1096.	0.5	17
138	Metformin Improves Cardiac Metabolism and Function, and Prevents Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats. Journal of the American Heart Association, 2020, 9, e015154.	3.7	17
139	Ischemia-stimulated Glucose Uptake Does Not Require Catecholamines in Rat Heart. Journal of Molecular and Cellular Cardiology, 1999, 31, 435-443.	1.9	16
140	Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sciences, 2018, 197, 30-39.	4.3	16
141	The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metabolic Syndrome and Related Disorders, 2015, 13, 292-297.	1.3	15
142	Strategies of Unloading the Failing Heart from Metabolic Stress. American Journal of Medicine, 2020, 133, 290-296.	1.5	15
143	After avandia: the use of antidiabetic drugs in patients with heart failure. Texas Heart Institute Journal, 2012, 39, 174-8.	0.3	15
144	Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells. Journal of the Royal Society Interface, 2014, 11, 20140852.	3.4	14

HEINRICH TAEGTMEYER

6

#	ARTICLE	IF	CITATIONS
145	Oncometabolic Tracks in the Heart. Circulation Research, 2017, 120, 267-269.	4.5	14
146	Steroid Receptor Coactivator-2 Is a Dual Regulator of Cardiac Transcription Factor Function. Journal of Biological Chemistry, 2014, 289, 17721-17731.	3.4	13
147	MondoA deficiency enhances sprint performance in mice. Biochemical Journal, 2014, 464, 35-48.	3.7	12
148	Normalization of Ejection Fraction and Resolution of Symptoms in Chronic Severe Heart Failure is Possible With Modern Medical Therapy: Clinical Observations in 11 Patients. American Journal of Therapeutics, 2008, 15, 206-213.	0.9	11
149	Challenges for Today's Pediatric Physician-Scientists. JAMA Pediatrics, 2018, 172, 220.	6.2	10
150	Transient activation of AMPK preceding left ventricular pressure overload reduces adverse remodeling and preserves left ventricular function. FASEB Journal, 2019, 33, 711-721.	0.5	10
151	Heart disease in diabetes—resist the beginnings. Journal of the American College of Cardiology, 2004, 43, 315.	2.8	9
152	Mechanical unloading of the failing heart exposes the dynamic nature of autophagy. Autophagy, 2010, 6, 155-156.	9.1	9
153	Clues from Bariatric Surgery: Reversing Insulin Resistance to Heal the Heart. Current Diabetes Reports, 2013, 13, 245-251.	4.2	9
154	Obesity and Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2021, 17, 345-356.	2.1	9
155	Metabolism. Circulation, 2017, 136, 2158-2161.	1.6	9
156	An Expanded Role for AMP-Activated Protein Kinase: Regulator of Myocardial Protein Degradation. Trends in Cardiovascular Medicine, 2011, 21, 124-127.	4.9	8
157	Diverging consequences of hexosamine biosynthesis in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2021, 153, 104-105.	1.9	8
158	The failing heart. New England Journal of Medicine, 2007, 356, 2545-6; author reply 2546.	27.0	8
159	Effects of insulin on glucose uptake by rat hearts during and after coronary flow reduction. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2170-H2177.	3.2	7
160	Glucose regulates the intrinsic inflammatory response of the heart to surgically induced hypothermic ischemic arrest and reperfusion. Physiological Genomics, 2017, 49, 37-52.	2.3	7
161	SIRPα Mediates IGF1 Receptor in Cardiomyopathy Induced by Chronic Kidney Disease. Circulation Research, 2022, 131, 207-221.	4.5	7

162 Fueling the Heart: Multiple Roles for Cardiac Metabolism. , 2007, , 1157-1175.

10

#	Article	IF	CITATIONS
163	More Than Just an Engine. Circulation Research, 2012, 111, 513-515.	4.5	6
164	Imaging Cardiac Metabolism. , 2013, , 289-321.		6
165	Heart Failure in Remission for More than 13 Years after Removal of a Left Ventricular Assist Device. Texas Heart Institute Journal, 2014, 41, 389-394.	0.3	5
166	Comment on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673–686. Diabetes, 2015, 64, e37-e37.	0.6	5
167	The changing landscape of cardiac metabolism. Journal of Molecular and Cellular Cardiology, 2015, 84, 129-132.	1.9	5
168	Myocardial energetics: Still only the tip of an iceberg. Heart Lung and Circulation, 2003, 12, 3-6.	0.4	4
169	Metabolic Crosstalk in Heart Failure. Journal of the American College of Cardiology, 2011, 58, 1126-1127.	2.8	4
170	The new cardiac metabolism. Journal of Molecular and Cellular Cardiology, 2013, 55, 1.	1.9	4
171	Slimming the Heart With Bariatric Surgery. Journal of the American College of Cardiology, 2013, 61, 990-991.	2.8	4
172	Perhexiline, CardiacÂEnergetics, andÂHeartÂFailure. JACC: Heart Failure, 2015, 3, 659-660.	4.1	4
173	Calcitonin gene-related peptide is not essential for the development of pressure overload-induced hypertrophy in vivo. Molecular and Cellular Biochemistry, 2001, 225, 43-49.	3.1	3
174	Obesity and Cardiac Metabolism in Women. JACC: Cardiovascular Imaging, 2008, 1, 434-435.	5.3	3
175	Insulin Sensitizers and Heart Failure: An Engine Flooded with Fuel. Current Hypertension Reports, 2010, 12, 399-401.	3.5	3
176	Fat Around the Heart. JACC: Cardiovascular Imaging, 2010, 3, 786-787.	5.3	3
177	Acute Exenatide Therapy Attenuates Postprandial Vasodilation in Humans with Prediabetes: A Randomized Controlled Trial. Metabolic Syndrome and Related Disorders, 2020, 18, 225-233.	1.3	3
178	Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure. Current Cardiology Reports, 2022, 24, 327-335.	2.9	3
179	Did the fat lady sing?. Critical Care Medicine, 2006, 34, 915-916.	0.9	2
180	Cardio-Onco-Metabolism – Metabolic vulnerabilities in cancer and the heart. Journal of Molecular and Cellular Cardiology, 2022, 171, 71-80.	1.9	2

HEINRICH TAEGTMEYER

#	Article	IF	CITATIONS
181	Improving Energy Metabolism in the Postischemic Heart-The Story of GIK. Seminars in Cardiothoracic and Vascular Anesthesia, 2003, 7, 67-76.	1.0	1
182	All things considered-including glucose control in the ICU. Current Hypertension Reports, 2009, 11, 383-384.	3.5	1
183	Adiponectin, Gut Hormones, and Insulin Resistance. Obesity Surgery, 2010, 20, 1748-1748.	2.1	1
184	Cardiomyocyte Metabolism. , 2012, , 187-202.		1
185	Comment on Gastaldelli et al. Short-term Effects of Laparoscopic Adjustable Gastric Banding Versus Roux-en-Y Gastric Bypass. Diabetes Care 2016;39:1925–1931. Diabetes Care, 2017, 40, e49-e49.	8.6	1
186	Maternal-Fetal Parabiosis in ObesityÂExposes Unexpected Roles forÂCardiac Metabolism. JACC: Cardiovascular Imaging, 2018, 11, 1756-1757.	5.3	1
187	Imaging Cardiac Metabolism. , 2021, , 369-401.		1
188	Geographical Differences in Cardiovascular Comorbidities and Outcomes of COVID-19 Hospitalized Patients in the USA. Cardiology, 2021, 146, 481-488.	1.4	1
189	Homeostasis Disrupted and Restored—A Fresh Look at the Mechanism and Treatment of Obesity During COVID-19. Frontiers in Cardiovascular Medicine, 2021, 8, 721956.	2.4	1
190	From Fetal to Fatal. Basic Science for the Cardiologist, 2006, , 1-9.	0.1	1
191	Multiple Roles of Cardiac Metabolism: New Opportunities for Imaging the Physiology of the Heart. , 2007, , 309-318.		1
192	Prolonged cardiac NR4A2 activation causes dilated cardiomyopathy in mice. Basic Research in Cardiology, 2022, 117, .	5.9	1
193	Anemia and energy depletion. Journal of the American College of Cardiology, 2003, 42, 2030.	2.8	0
194	Fatty acid metabolism in cardiac hypertrophy and failure. Advances in Molecular and Cell Biology, 2003, 33, 259-270.	0.1	0
195	Battling the four horsemen of the metabolic syndrome. Current Hypertension Reports, 2007, 9, 445-446.	3.5	0
196	Have your cake and eat it? Insulin strengthens the stunned heart*. Critical Care Medicine, 2008, 36, 2933-2934.	0.9	0
197	Early Benefits From Weight-Loss Surgery. Journal of the American College of Cardiology, 2010, 55, 1754.	2.8	0

198 Alterations in Cardiac Metabolism. , 2011, , 312-329.

#	Article	IF	CITATIONS
199	ls Bitter Better? The Benefits of Chocolate for the Cardiovascular System. Current Hypertension Reports, 2011, 13, 401-403.	3.5	0
200	Refugee Cardiologists and the Coexistence of the American Heart Association andÂthe American College ofÂCardiology. Journal of the American College of Cardiology, 2013, 62, 645-646.	2.8	0
201	Mixed Messages. JACC: Heart Failure, 2013, 1, 548.	4.1	0
202	Two contrasting outcomes of weight loss surgery: Positive impact on the heart, negative impact on the liver. Case Reports in Internal Medicine, 2014, 2, .	0.0	0
203	In the Footsteps of Virchow. JACC: Cardiovascular Imaging, 2014, 7, 432-433.	5.3	0
204	Letter by Karlstaedt and Taegtmeyer Regarding Article, "Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy― Circulation Research, 2016, 119, e28.	4.5	0
205	Heart Failure in Diabetes. Circulation Research, 2021, 128, 358-359.	4.5	0
206	Icons in Cardiology. Cardiology, 2021, 146, 667.	1.4	0
207	Richard J Bing, MD (1909 -2010). Cardiology, 2021, 146, 801-803.	1.4	0
208	"WESTERN―DIET INDUCES APOPTOSIS IN THE HEART OF A RAT MODEL WITH DIETâ€iNDUCED OBESITY. FA Journal, 2008, 22, 1091.4.	SEB 0.5	0
209	Targeting Anaplerotic Pathways That Support Fatty Acid Metabolism as a Therapeutic Strategy for Hematological Malignancies: The Achilles' Heel of the Warburg Effect Blood, 2008, 112, 1631-1631.	1.4	0
210	Pharmacological Inhibition of Fatty Acid Oxidation as a Novel Therapeutic Concept for Acute Myeloid Leukemia Blood, 2009, 114, 3779-3779.	1.4	0
211	Western diet: Too much fuel for the heart. Biochemist, 2010, 32, 25-27.	0.5	0
212	Rapamycin Relieves ER Stress and Improves Function in Hearts Subjected to High Workload. FASEB Journal, 2011, 25, 1097.18.	0.5	0
213	Chronic hyperinsulinemia sensitizes myocytes to hyperglycemiaâ€induced cell death. FASEB Journal, 2012, 26, 869.24.	0.5	0
214	Decreased fatty acid oxidation impairs contractile recovery of the insulin resistant heart postâ€ischemia. FASEB Journal, 2013, 27, 1191.3.	0.5	0
215	Letter by Lucas and Taegtmeyer Regarding Article, "One-Year Committed Exercise Training Reverses Abnormal Left Ventricular Myocardial Stiffness in Patients With Stage B Heart Failure With Preserved Ejection Fractionâ€: Circulation, 2022, 145, e642-e643.	1.6	0
216	Abstract 20910: Alpha-Ketoglutarate Metabolism Regulates Oncometabolic Adaptation in the Heart. Circulation, 2017, 136, .	1.6	0

#	Article	IF	CITATIONS
217	2022 Beijing Winter Olympics: Spotlight on Cardiac Metabolism. Circulation, 2022, 145, 1561-1562.	1.6	0