
Roger D Pechous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment with Fluticasone Propionate Increases Antibiotic Efficacy during Treatment of Late-Stage Primary Pneumonic Plague. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0127521.	3.2	2
2	The Yersinia pestis GTPase BipA Promotes Pathogenesis of Primary Pneumonic Plague. Infection and Immunity, 2021, 89, .	2.2	4
3	Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 2021, 11, 14536.	3.3	14
4	A Dual Role for the Plasminogen Activator Protease During the Preinflammatory Phase of Primary Pneumonic Plague. Journal of Infectious Diseases, 2020, 222, 407-416.	4.0	10
5	Intranasal Inoculation of Mice with Yersinia pestis and Processing of Pulmonary Tissue for Analysis. Methods in Molecular Biology, 2019, 2010, 17-28.	0.9	6
6	Modeling Pneumonic Plague in Human Precision-Cut Lung Slices Highlights a Role for the Plasminogen Activator Protease in Facilitating Type 3 Secretion. Infection and Immunity, 2019, 87, .	2.2	17
7	With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia. Frontiers in Cellular and Infection Microbiology, 2017, 7, 160.	3.9	82
8	Pneumonic Plague: The Darker Side of Yersinia pestis. Trends in Microbiology, 2016, 24, 190-197.	7.7	122
9	Yersinia pestis Activates Both IL-1Î ² and IL-1 Receptor Antagonist to Modulate Lung Inflammation during Pneumonic Plague. PLoS Pathogens, 2015, 11, e1004688.	4.7	30
10	Spatially Distinct Neutrophil Responses within the Inflammatory Lesions of Pneumonic Plague. MBio, 2015, 6, e01530-15.	4.1	30
11	<i>In Vivo</i> Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation. MBio, 2015, 6, e02302-14.	4.1	25
12	Illuminating Targets of Bacterial Secretion. PLoS Pathogens, 2015, 11, e1004981.	4.7	7
13	Early Host Cell Targets of Yersinia pestis during Primary Pneumonic Plague. PLoS Pathogens, 2013, 9, e1003679.	4.7	77
14	Working toward the Future: Insights into <i>Francisella tularensis</i> Pathogenesis and Vaccine Development. Microbiology and Molecular Biology Reviews, 2009, 73, 684-711.	6.6	127
15	A Francisella tularensis Schu S4 Purine Auxotroph Is Highly Attenuated in Mice but Offers Limited Protection against Homologous Intranasal Challenge. PLoS ONE, 2008, 3, e2487.	2.5	75
16	Attenuation and protective efficacy of an O-antigen-deficient mutant of Francisella tularensis LVS. Microbiology (United Kingdom), 2007, 153, 3141-3153.	1.8	65
17	In Vivo Himar1 -Based Transposon Mutagenesis of Francisella tularensis. Applied and Environmental Microbiology, 2006, 72, 1878-1885.	3.1	82
18	Construction and Characterization of an Attenuated Purine Auxotroph in a Francisella tularensis Live Vaccine Strain. Infection and Immunity, 2006, 74, 4452-4461.	2.2	71

#	Article	IF	CITATIONS
19	Regulation of the Expression of Cell Wall Stress Stimulon Member Gene msrA1 in Methicillin-Susceptible or -Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2004, 48, 3057-3063.	3.2	39
20	NaCl-sensitive mutant ofStaphylococcus aureushas a Tn917-lacZinsertion in itsarsoperon. FEMS Microbiology Letters, 2003, 222, 171-176.	1.8	21
21	Male Sex and Age Biases Viral Burden, Viral Shedding, and Type 1 and 2 Interferon Responses During SARS-CoV-2 Infection in Ferrets. SSRN Electronic Journal, 0, , .	0.4	1