Elena K Schneider-Futschik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499758/publications.pdf

Version: 2024-02-01

56 papers 1,404 citations

304743 22 h-index 377865 34 g-index

58 all docs 58 docs citations

58 times ranked 1846 citing authors

#	Article	IF	CITATIONS
1	An "Unlikely―Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI. ACS Infectious Diseases, 2016, 2, 478-488.	3.8	80
2	Antibiotic–non-antibiotic combinations for combating extremely drug-resistant Gram-negative â€~superbugs'. Essays in Biochemistry, 2017, 61, 115-125.	4.7	71
3	Use of Fractional Exhaled Nitric Oxide to Guide the Treatment of Asthma: An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2021, 204, e97-e109.	5. 6	69
4	Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chemical Neuroscience, 2018, 9, 824-837.	3 . 5	67
5	Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties. Polymers, 2018, 10, 10.	4.5	59
6	Predictive factors for lumacaftor/ivacaftor clinical response. Journal of Cystic Fibrosis, 2019, 18, 368-374.	0.7	56
7	Health impacts of bushfire smoke exposure in Australia. Respirology, 2020, 25, 495-501.	2.3	53
8	From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative "Superbugs―Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microbial Drug Resistance, 2017, 23, 640-650.	2.0	45
9	Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chemical Neuroscience, 2019, 10, 120-131.	3.5	45
10	Development of HPLC and LC–MS/MS methods for the analysis of ivacaftor, its major metabolites and lumacaftor in plasma and sputum of cystic fibrosis patients treated with ORKAMBI or KALYDECO. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1038, 57-62.	2.3	39
11	Cationic acrylate oligomers comprising amino acid mimic moieties demonstrate improved antibacterial killing efficiency. Journal of Materials Chemistry B, 2017, 5, 531-536.	5.8	38
12	Cytochrome P450 3A4 Induction: Lumacaftor versus Ivacaftor Potentially Resulting in Significantly Reduced Plasma Concentration of Ivacaftor. Drug Metabolism Letters, 2018, 12, 71-74.	0.8	36
13	Drug–drug plasma protein binding interactions of ivacaftor. Journal of Molecular Recognition, 2015, 28, 339-348.	2.1	34
14	Can Cystic Fibrosis Patients Finally Catch a Breath With Lumacaftor/Ivacaftor?. Clinical Pharmacology and Therapeutics, 2017, 101, 130-141.	4.7	33
15	The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study. MSystems, 2020, 5, .	3.8	33
16	Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics, 2021, 13, 1157.	4.5	32
17	Aminoglycoside Concentrations Required for Synergy with Carbapenems against Pseudomonas aeruginosa Determined via Mechanistic Studies and Modeling. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31
18	Polymyxins Bind to the Cell Surface of Unculturable <i>Acinetobacter baumannii</i> and Cause Unique Dependent Resistance. Advanced Science, 2020, 7, 2000704.	11.2	31

#	Article	IF	CITATIONS
19	Deficiency in Outer Dense Fiber 1 Is a Marker and Potential Driver of Idiopathic Male Infertility. Molecular and Cellular Proteomics, 2016, 15, 3685-3693.	3.8	30
20	Metabolomic Description of Ivacaftor Elevating Polymyxin B Mediated Antibacterial Activity in Cystic Fibrosis <i>Pseudomonas aeruginosa</i> ACS Pharmacology and Translational Science, 2020, 3, 433-443.	4.9	27
21	Synthesis and structureâ 'activity relationships of teixobactin. Annals of the New York Academy of Sciences, 2020, 1459, 86-105.	3 . 8	26
22	Investigating the Interaction of Octapeptin A3 with Model Bacterial Membranes. ACS Infectious Diseases, 2017, 3, 606-619.	3.8	25
23	Emerging Cystic Fibrosis Transmembrane Conductance Regulator Modulators as New Drugs for Cystic Fibrosis: A Portrait of <i>in Vitro</i> Pharmacology and Clinical Translation. ACS Pharmacology and Translational Science, 2020, 3, 4-10.	4.9	25
24	Beyond cystic fibrosis transmembrane conductance regulator therapy: a perspective on gene therapy and small molecule treatment for cystic fibrosis. Gene Therapy, 2019, 26, 354-362.	4.5	23
25	The potentially beneficial central nervous system activity profile of ivacaftor and its metabolites. ERJ Open Research, 2018, 4, 00127-2017.	2.6	21
26	Plasma Protein Binding Structure–Activity Relationships Related to the N-Terminus of Daptomycin. ACS Infectious Diseases, 2017, 3, 249-258.	3.8	20
27	Effective Strategy Targeting Polymyxin-Resistant Gram-Negative Pathogens: Polymyxin B in Combination with the Selective Serotonin Reuptake Inhibitor Sertraline. ACS Infectious Diseases, 2020, 6, 1436-1450.	3.8	20
28	Sputum Active Polymyxin Lipopeptides: Activity against Cystic FibrosisPseudomonas aeruginosalsolates and Their Interactions with Sputum Biomolecules. ACS Infectious Diseases, 2018, 4, 646-655.	3.8	19
29	Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa. Computational and Structural Biotechnology Journal, 2018, 16, 587-599.	4.1	19
30	Lumacaftor-ivacaftor effects on cystic fibrosis-related liver involvement in adolescents with homozygous F508 del-CFTR. Journal of Cystic Fibrosis, 2022, 21, 212-219.	0.7	19
31	Gelofusine Ameliorates Colistin-Induced Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	18
32	Polymyxin B combinations with FDA-approved non-antibiotic phenothiazine drugs targeting multi-drug resistance of Gram-negative pathogens. Computational and Structural Biotechnology Journal, 2020, 18, 2247-2258.	4.1	17
33	Multiple Reaction Monitoring Mass Spectrometry for the Drug Monitoring of Ivacaftor, Tezacaftor, and Elexacaftor Treatment Response in Cystic Fibrosis: A High-Throughput Method. ACS Pharmacology and Translational Science, 2020, 3, 987-996.	4.9	17
34	A Novel Chemical Biology Approach for Mapping of Polymyxin Lipopeptide Antibody Binding Epitopes. ACS Infectious Diseases, 2016, 2, 341-351.	3.8	16
35	A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria. Journal of Controlled Release, 2017, 259, 83-91.	9.9	15
36	A Comparative Study of Outer Membrane Proteome between Paired Colistin-Susceptible and Extremely Colistin-Resistant <i>Klebsiella pneumoniae</i> Strains. ACS Infectious Diseases, 2018, 4, 1692-1704.	3.8	15

#	Article	IF	CITATIONS
37	The Balance between the Safety of Mother, Fetus, and Newborn Undergoing Cystic Fibrosis Transmembrane Conductance Regulator Treatments during Pregnancy. ACS Pharmacology and Translational Science, 2020, 3, 835-843.	4.9	15
38	Anti-Inflammatory Influences of Cystic Fibrosis Transmembrane Conductance Regulator Drugs on Lung Inflammation in Cystic Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7606.	4.1	15
39	Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens. European Journal of Medicinal Chemistry, 2018, 148, 507-518.	5.5	14
40	Exploiting Macromolecular Design To Optimize the Antibacterial Activity of Alkylated Cationic Oligomers. Biomacromolecules, 2018, 19, 4629-4640.	5.4	14
41	Successes and Challenges: Inhaled Treatment Approaches Using Magnetic Nanoparticles in Cystic Fibrosis. Magnetochemistry, 2020, 6, 25.	2.4	13
42	Entry of cystic fibrosis transmembrane conductance potentiator ivacaftor into the developing brain and lung. Journal of Cystic Fibrosis, 2021, 20, 857-864.	0.7	13
43	A Fresh Shine on Cystic Fibrosis Inhalation Therapy: Antimicrobial Synergy of Polymyxin B in Combination with Silver Nanoparticles. Journal of Biomedical Nanotechnology, 2017, 13, 447-457.	1.1	12
44	Optimized LC-MS/MS Method for the High-throughput Analysis of Clinical Samples of Ivacaftor, Its Major Metabolites, and Lumacaftor in Biological Fluids of Cystic Fibrosis Patients. Journal of Visualized Experiments, 2017, , .	0.3	11
45	Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]–Colistin Prodrugs through Copper-Mediated Photoinduced Living Radical Polymerization. Bioconjugate Chemistry, 2017, 28, 1916-1924.	3.6	11
46	Magnetic Nanoparticle-Based Drug Delivery Approaches for Preventing and Treating Biofilms in Cystic Fibrosis. Magnetochemistry, 2020, 6, 72.	2.4	8
47	The health impacts of ambient air pollution in Australia: a systematic literature review. Internal Medicine Journal, 2021, 51, 1567-1579.	0.8	8
48	The Plasma Protein Binding Proteome of Ertapenem: A Novel Compound-Centric Proteomic Approach for Elucidating Drug–Plasma Protein Binding Interactions. ACS Chemical Biology, 2016, 11, 3353-3364.	3.4	7
49	Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 2015, 20, 10415-10434.	3.8	6
50	The impact of backbone N â€methylation on the structureâ€activity relationship of Leu 10 â€teixobactin. Journal of Peptide Science, 2019, 25, e3206.	1.4	6
51	Insights Into Patient Variability During Ivacaftor-Lumacaftor Therapy in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 577263.	3.5	6
52	A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutininâ€"A Picture of an Avian Virus on the Verge of Becoming a Pandemic?. Vaccines, 2017, 5, 51.	4.4	5
53	Traffic pollution near childcare centres in Melbourne. Australian and New Zealand Journal of Public Health, 2019, 43, 410-412.	1.8	5
54	Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infectious Diseases, 2019, 5, 35-48.	3.8	3

#	Article	IF	CITATIONS
55	Ivacaftor Alters Macrophage and Lymphocyte Infiltration in the Lungs Following Lipopolysaccharide Exposure. ACS Pharmacology and Translational Science, 2022, 5, 419-428.	4.9	3
56	Editorial: Functional Characterization and Pharmaceutical Targets in Common and Rare CFTR Dysfunctions. Frontiers in Physiology, 2021, 12, 830285.	2.8	0