List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	6.0	3,126
2	Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 2015, 517, 205-208.	13.7	1,506
3	Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 2019, 178, 795-806.e12.	13.5	830
4	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	13.7	818
5	Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clinical Infectious Diseases, 2012, 55, 905-914.	2.9	779
6	Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 2010, 120, 4332-4341.	3.9	756
7	The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 2014, 124, 1174-1182.	0.6	711
8	Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1373-1383.	2.0	619
9	Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine, 2012, 209, 903-911.	4.2	552
10	Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunology, 2016, 17, 505-513.	7.0	536
11	Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nature Medicine, 2018, 24, 1804-1808.	15.2	521
12	Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease. Immunity, 2012, 37, 339-350.	6.6	509
13	Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. New England Journal of Medicine, 2020, 382, 822-834.	13.9	435
14	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	5.8	404
15	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	6.0	369
16	Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nature Medicine, 2021, 27, 504-514.	15.2	357
17	Interleukin-22 Drives Endogenous Thymic Regeneration in Mice. Science, 2012, 336, 91-95.	6.0	334
18	Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 2018, 10, .	5.8	258

#	Article	IF	CITATIONS
19	Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 1650-1659.	0.8	252
20	Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nature Reviews Cancer, 2010, 10, 213-221.	12.8	245
21	Lactose drives <i>Enterococcus</i> expansion to promote graft-versus-host disease. Science, 2019, 366, 1143-1149.	6.0	217
22	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	15.2	216
23	Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 845-852.	2.0	183
24	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	15.2	179
25	Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nature Medicine, 2020, 26, 608-617.	15.2	136
26	Gut Microbiota and Tacrolimus Dosing in Kidney Transplantation. PLoS ONE, 2015, 10, e0122399.	1.1	133
27	RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	5.8	114
28	High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood, 2015, 125, 199-205.	0.6	109
29	Relapse after Allogeneic Hematopoietic Cell Therapy. Biology of Blood and Marrow Transplantation, 2010, 16, S138-S145.	2.0	94
30	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	5.6	93
31	Distinct Steps in the Adsorption of Pulmonary Surfactant to an Air-Liquid Interface. Biophysical Journal, 2000, 78, 257-266.	0.2	86
32	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	5.1	86
33	The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biology of Blood and Marrow Transplantation, 2018, 24, 1322-1340.	2.0	85
34	Protective Factors in the Intestinal Microbiome Against Clostridium difficile Infection in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Infectious Diseases, 2017, 215, 1117-1123.	1.9	81
35	Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Medicine, 2021, 13, 107.	3.6	74
36	Early Clostridium difficile Infection during Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE, 2014, 9, e90158.	1.1	69

#	Article	IF	CITATIONS
37	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplantation and Cellular Therapy, 2021, 27, 817-835.	0.6	62
38	The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. Journal of Clinical Investigation, 2010, 120, 343-356.	3.9	62
39	Impact of antibiotic therapy on the development and response to treatment of immune checkpoint inhibitor-mediated diarrhea and colitis. , 2019, 7, 242.		60
40	Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood, 2017, 130, 933-942.	0.6	55
41	Intestinal microbiota-related effects on graft-versus-host disease. International Journal of Hematology, 2015, 101, 428-437.	0.7	51
42	Role of intestinal microbiota in transplantation outcomes. Best Practice and Research in Clinical Haematology, 2015, 28, 155-161.	0.7	50
43	MiRKAT-S: a community-level test of association between the microbiota and survival times. Microbiome, 2017, 5, 17.	4.9	50
44	<i>Lactobacillus rhamnosus GG</i> probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation. Clinical Transplantation, 2017, 31, e12947.	0.8	49
45	Clinical Evidence for the Microbiome in Inflammatory Diseases. Frontiers in Immunology, 2017, 8, 400.	2.2	46
46	Fecal Microbiota Transplantation: Restoring the Injured Microbiome after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2019, 25, e17-e22.	2.0	44
47	Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biology of Blood and Marrow Transplantation, 2015, 21, 1360-1366.	2.0	42
48	Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study. Blood, 2021, 137, 1527-1537.	0.6	42
49	Nodal immune flare mimics nodal disease progression following neoadjuvant immune checkpoint inhibitors in non-small cell lung cancer. Nature Communications, 2021, 12, 5045.	5.8	42
50	Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood, 2016, 128, 2395-2402.	0.6	39
51	Role of gut flora after bone marrow transplantation. Nature Microbiology, 2016, 1, 16036.	5.9	36
52	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	15.2	34
53	Refractory acute graft-versus-host disease: a new working definition beyond corticosteroid refractoriness. Blood, 2020, 136, 1903-1906.	0.6	34
54	Microbiome-intestine cross talk during acute graft-versus-host disease. Blood, 2020, 136, 401-409.	0.6	34

#	Article	IF	CITATIONS
55	Intensified Mycophenolate Mofetil Dosing and Higher Mycophenolic Acid Trough Levels Reduce Severe Acute Graft-versus-Host Disease after Double-Unit Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 920-925.	2.0	33
56	Fecal Microbiome, Metabolites, and Stem Cell Transplant Outcomes: A Single-Center Pilot Study. Open Forum Infectious Diseases, 2019, 6, ofz173.	0.4	32
57	Dosing a synbiotic of human milk oligosaccharides and B.Âinfantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. Cell Host and Microbe, 2022, 30, 712-725.e7.	5.1	32
58	Can Consideration of the Microbiome Improve Antimicrobial Utilization and Treatment Outcomes in the Oncology Patient?. Clinical Cancer Research, 2017, 23, 3263-3268.	3.2	30
59	Oral microbiome and onset of oral mucositis in patients with squamous cell carcinoma of the head and neck. Cancer, 2020, 126, 5124-5136.	2.0	30
60	Pilot Clinical Trial of Perioperative Durvalumab and Tremelimumab in the Treatment of Resectable Colorectal Cancer Liver Metastases. Clinical Cancer Research, 2021, 27, 3039-3049.	3.2	28
61	Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease. Hepatology, 2022, 75, 955-967.	3.6	25
62	Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation. Blood, 2009, 113, 1574-1580.	0.6	24
63	Associations between the gut microbiome and fatigue in cancer patients. Scientific Reports, 2021, 11, 5847.	1.6	24
64	Alloreactive T cells deficient of the short-chain fatty acid receptor GPR109A induce less graft-versus-host disease. Blood, 2022, 139, 2392-2405.	0.6	24
65	pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis. Bioinformatics, 2019, 35, 3567-3575.	1.8	21
66	aPCoA: covariate adjusted principal coordinates analysis. Bioinformatics, 2020, 36, 4099-4101.	1.8	18
67	Microbiome Anomalies in Allogeneic Hematopoietic Cell Transplantation. Annual Review of Medicine, 2020, 71, 137-148.	5.0	16
68	Performance determinants of unsupervised clustering methods for microbiome data. Microbiome, 2022, 10, 25.	4.9	15
69	IL-22-dependent dysbiosis and mononuclear phagocyte depletion contribute to steroid-resistant gut graft-versus-host disease in mice. Nature Communications, 2021, 12, 805.	5.8	14
70	Gut Microbiome Alterations Associated with Diabetes in Mexican Americans in South Texas. MSystems, 2022, 7, e0003322.	1.7	14
71	Network for Biomarker Immunoprofiling for Cancer Immunotherapy: Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC). Clinical Cancer Research, 2021, 27, 5038-5048.	3.2	13
72	The T Cell Cytolytic Molecules Fas Ligand and TRAIL, the Trafficking Molecules CCR9, Î ² 7 Integrin and PSGL-1, and the Immune Modulating Molecules OX40, CEACAM1, and CTLA4 Are Required for Thymic Graft-Versus-Host Disease. Blood, 2008, 112, 65-65.	0.6	12

#	Article	IF	CITATIONS
73	Uncovering the role of the gut microbiota in immune checkpoint blockade therapy: A mini-review. Seminars in Hematology, 2020, 57, 13-18.	1.8	11
74	Enhanced Responses to Tumor Immunization Following Total Body Irradiation Are Time-Dependent. PLoS ONE, 2013, 8, e82496.	1.1	11
75	Enteropathogenic Escherichia coli Infection in Cancer and Immunosuppressed Patients. Clinical Infectious Diseases, 2021, 72, e620-e629.	2.9	9
76	Loss of Microbiota Diversity after Autologous Stem Cell Transplant Is Comparable to Injury in Allogeneic Stem Cell Transplant. Blood, 2018, 132, 608-608.	0.6	9
77	Neutropenic Enterocolitis: Clinical Features and Outcomes. Diseases of the Colon and Rectum, 2020, 63, 381-388.	0.7	8
78	Impact of the Intestinal Microbiota on Infections and Survival Following Hematopoietic Stem Cell Transplantation. Blood, 2014, 124, SCI-48-SCI-48.	0.6	8
79	Bayesian compositional regression with structured priors for microbiome feature selection. Biometrics, 2021, 77, 824-838.	0.8	7
80	Role of the intestinal mucosa in acute gastrointestinal GVHD. Hematology American Society of Hematology Education Program, 2016, 2016, 119-127.	0.9	6
81	Disease-Free Survival After Cord Blood (CB) Transplantation Is Not Different to That After Related or Unrelated Donor Transplantation in Patients with Hematologic Malignancies Blood, 2009, 114, 2296-2296.	0.6	6
82	Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer. PLoS ONE, 2012, 7, e35222.	1.1	5
83	The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opinion on Biological Therapy, 2021, 21, 1121-1131.	1.4	5
84	An alphaâ€defensin gene single nucleotide polymorphism modulates the gut microbiota and may alter the risk of acute graft†versus â€host disease. British Journal of Haematology, 2020, 189, 926-930.	1.2	4
85	Not just leukemia: CMV may protect against lymphoma recurrence after allogeneic transplant. Leukemia and Lymphoma, 2017, 58, 759-761.	0.6	3
86	Implicating or exonerating the gut microbiome in blood-borne infection. Nature Medicine, 2018, 24, 1788-1789.	15.2	3
87	Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma. Gut Microbes, 2022, 14, .	4.3	3
88	ProgPerm: Progressive permutation for a dynamic representation of the robustness of microbiome discoveries. BMC Bioinformatics, 2021, 22, 126.	1.2	2
89	Antibiotic prophylaxis in allogeneic stem cell transplantation—what is the correct choice?. Bone Marrow Transplantation, 2016, 51, 1071-1072.	1.3	1
90	Over-Expression of TRAIL on Donor T Cells Enhances GVT and Suppresses Gvhd Via Elimination of Alloreactive T Cells and Host APC. Blood, 2011, 118, 817-817.	0.6	1

#	Article	IF	CITATIONS
91	Gut Bacterial Diversity Associates with Efficacy of Anti-CD19 CAR T-Cell Therapy in Patients with Large B-Cell Lymphoma. Blood, 2020, 136, 34-35.	0.6	1
92	TCR Repertoires in Graft-Versus-Host-Disease (GVHD)-Target Tissues Reveals Tissue Specificity of the Alloimmune Response. Blood, 2020, 136, 21-23.	0.6	1
93	Microbiome and Allogeneic Hematopoietic Stem Cell Transplantation. , 2019, , 141-154.		Ο
94	TRAIL/ DR5 Interactions Are Important for Thymic Damage After Allogeneic Bone Marrow Transplantation Blood, 2009, 114, 234-234.	0.6	0
95	NOD2 Regulates Hematopoietic Cell Function During Graft-Versus-Host Disease Blood, 2009, 114, 2453-2453.	0.6	О
96	Gvhd, Hematopoietic Dysfunction, and Post-Transplant Immune Deficiency: Loss of Marrow Function Leads to Ineffective Extramedullary Hematopoiesis, However Lymphoid Reconstitution Is Restored by the Synergistic Effects of KGF, Sex Steroid Ablation, and Precursor T Cell Adoptive Therapy Blood, 2010, 116, 1468-1468.	0.6	0
97	Genetic Engineering of Donor T Cells for BMT Immunotherapy: Expression of TRAIL and PLZF Selectively Enhances GVT and Abrogates Gvhd. Blood, 2010, 116, 730-730.	0.6	Ο
98	Innate Lymphoid Cell-Derived IL-22 Mediates Endogenous Thymic Repair Under the Control of IL-23. Blood, 2011, 118, 143-143.	0.6	0
99	Age-Related Thymic Involution Triggers Intrinsic Regeneration Pathways but They Remain Ineffective for Its Renewal. Blood, 2012, 120, 1043-1043.	0.6	0
100	Suppression of Luteinizing Hormone Enhances HSC Recovery after Hematopoietic Injuries. Blood, 2016, 128, 370-370.	0.6	0
101	Oral Nutrition Modulates the Intestinal Barrier Following Cytotoxic Therapy Via the Microbiome. Blood, 2018, 132, 63-63.	0.6	0
102	Immunomodulatory Molecules of the Immune System. , 2007, , 67-121.		0
103	Nutrition As a Predictor of Microbiome Injury in Allo-HCT. Blood, 2021, 138, 746-746.	0.6	0
104	Flow Cytometric Analysis of Microbial Diversity in Patients with Aggressive Lymphoma Disease Undergoing Chemoimmunotherapy. Blood, 2021, 138, 4005-4005.	0.6	0
105	Financial incentives to increase stool collection rates for microbiome studies in adult bone marrow transplant patients. PLoS ONE, 2022, 17, e0267974.	1.1	0