List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997466/publications.pdf Version: 2024-02-01

		18465	24961
172	14,354	62	109
papers	citations	h-index	g-index
222	222	222	11009
223	223	223	11098
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Need for harmonized long-term multi-lake monitoring of African Great Lakes. Journal of Great Lakes Research, 2023, 49, 101988.	0.8	16
2	Inundation, Hydrodynamics and Vegetation Influence Carbon Dioxide Concentrations in Amazon Floodplain Lakes. Ecosystems, 2022, 25, 911-930.	1.6	9
3	Carbon dynamics and CO2 and CH4 exchange in the mangrove dominated Guayas river delta, Ecuador. Estuarine, Coastal and Shelf Science, 2022, 267, 107766.	0.9	7
4	Greenhouse gas emissions from African lakes are no longer a blind spot. Science Advances, 2022, 8, .	4.7	25
5	The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue. Scientific Reports, 2021, 11, 1597.	1.6	6
6	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
7	Net community metabolism of a <scp><i>Posidonia oceanica</i></scp> meadow. Limnology and Oceanography, 2021, 66, 2126-2140.	1.6	9
8	Limnological changes in Lake Victoria since the midâ€20 th century. Freshwater Biology, 2021, 66, 1630-1647.	1.2	6
9	Response of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas to oxidative stress in three phytoplankton species. Journal of Plankton Research, 2021, 43, 673-690.	0.8	2
10	Dynamics of nitrous oxide with depth in groundwater: Insights from ambient groundwater and laboratory incubation experiments (Hesbaye chalk aquifer, Belgium). Journal of Contaminant Hydrology, 2021, 241, 103797.	1.6	1
11	Nitrate-dependent anaerobic methane oxidation and chemolithotrophic denitrification in a temperate eutrophic lake. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
12	Freshwater bivalve shells as hydrologic archives in the Congo Basin. Geochimica Et Cosmochimica Acta, 2021, 308, 101-117.	1.6	2
13	Dimethylsulfoniopropionate and dimethylsulfoxide in Posidonia oceanica. Marine Biology, 2021, 168, 1.	0.7	0
14	Changes in chlorophyll concentration and phenology in the North Sea in relation to deâ€eutrophication and sea surface warming. Limnology and Oceanography, 2020, 65, 828-847.	1.6	38
15	Editorial: Structure, Functioning and Conservation of Coastal Vegetated Wetlands. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	3
16	A 15-Month Survey of Dimethylsulfoniopropionate and Dimethylsulfoxide Content in Posidonia oceanica. Frontiers in Ecology and Evolution, 2020, 7, .	1.1	3
17	Dissolved organic matter composition and reactivity in Lake Victoria, the world's largest tropical lake. Biogeochemistry, 2020, 150, 61-83.	1.7	10
18	Diversity and ecology of phytoplankton in Lake Edward (East Africa): Present status and long-term changes. Journal of Great Lakes Research, 2020, 46, 741-751.	0.8	12

#	Article	IF	CITATIONS
19	East Siberian Arctic inland waters emit mostly contemporary carbon. Nature Communications, 2020, 11, 1627.	5.8	43
20	Methane paradox in tropical lakes? Sedimentary fluxes rather than pelagic production in oxic conditions sustain methanotrophy and emissions to the atmosphere. Biogeosciences, 2020, 17, 5209-5221.	1.3	19
21	Ideas and perspectives: A strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 2020, 17, 5809-5828.	1.3	16
22	Salinity and growth effects on dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) cell quotas of Skeletonema costatum, Phaeocystis globosa and Heterocapsa triquetra. Estuarine, Coastal and Shelf Science, 2019, 226, 106275.	0.9	12
	Variations in dissolved greenhouse gases (CO ₂ ,) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
23	River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences, 2019, 16, 3801-3834.	1.3	93
24	Response of marine methane dissolved concentrations and emissions in the Southern North Sea to the European 2018 heatwave. Continental Shelf Research, 2019, 190, 104004.	0.9	14
25	Diffusive emissions of methane and nitrous oxide from a cascade of tropical hydropower reservoirs in Kenya. Lakes and Reservoirs: Research and Management, 2019, 24, 127-135.	0.6	7
26	Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe?. Biogeosciences, 2019, 16, 769-784.	1.3	63
27	Dynamics of greenhouse gases in groundwater: hydrogeological and hydrogeochemical controls. Applied Geochemistry, 2019, 105, 31-44.	1.4	12
28	Interâ€annual variations over a decade of primary production of the seagrass <scp><i>Posidonia oceanica</i></scp> . Limnology and Oceanography, 2019, 64, 32-45.	1.6	17
29	Determination of dimethylsulfoniopropionate and dimethylsulfoxide in Posidonia oceanica leaf tissue. MethodsX, 2019, 6, 56-62.	0.7	8
30	The roles of climate and human land-use in the late Holocene rainforest crisis of Central Africa. Earth and Planetary Science Letters, 2019, 505, 30-41.	1.8	24
31	Seasonal and inter-annual variations in carbon fluxes in a tropical river system (Tana River, Kenya). Aquatic Sciences, 2018, 80, 1.	0.6	6
32	Annual cycle of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) related to phytoplankton succession in the Southern North Sea. Science of the Total Environment, 2018, 622-623, 362-372.	3.9	37
33	Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake. Science of the Total Environment, 2018, 630, 1381-1393.	3.9	36
34	Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium). Science of the Total Environment, 2018, 619-620, 1579-1588.	3.9	21
35	The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochimica Et Cosmochimica Acta, 2018, 229, 147-161.	1.6	33
36	lsotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of the Total Environment, 2018, 621, 1415-1432.	3.9	186

#	Article	IF	CITATIONS
37	Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Science of the Total Environment, 2018, 610-611, 342-355.	3.9	138
38	Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu). Limnology and Oceanography, 2018, 63, 687-701.	1.6	46
39	Productivity and Temperature as Drivers of Seasonal and Spatial Variations of Dissolved Methane in the Southern Bight of the North Sea. Ecosystems, 2018, 21, 583-599.	1.6	63
40	An intercomparison of oceanic methane and nitrous oxide measurements. Biogeosciences, 2018, 15, 5891-5907.	1.3	42
41	Social-environmental analysis of methane in the South China Sea and bordering countries. Anthropocene Coasts, 2018, 1, 62-88.	0.6	3
42	Dynamics of greenhouse gases in the river–groundwater interface in a gaining river stretch (Triffoy) Tj ETQq0	0 0 ₀ gBT /(Overlock 10 T
43	Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted Seine River in France. Scientific Reports, 2018, 8, 13961.	1.6	28
44	A comprehensive biogeochemical record and annual flux estimates for the Sabaki River (Kenya). Biogeosciences, 2018, 15, 1683-1700.	1.3	2
45	Carbon dynamics and CO ₂ and CH ₄ outgassing in the Mekong delta. Biogeosciences, 2018, 15, 1093-1114.	1.3	53
46	Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu). Journal of Great Lakes Research, 2018, 44, 1183-1193.	0.8	20
47	First mesocosm experiments to study the impacts of ocean acidification on plankton communities in the NW Mediterranean Sea (MedSeA project). Estuarine, Coastal and Shelf Science, 2017, 186, 11-29.	0.9	35
48	Methane in the South China Sea and the Western Philippine Sea. Continental Shelf Research, 2017, 135, 23-34.	0.9	23
49	Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans. Nature Geoscience, 2017, 10, 217-221.	5.4	61
50	Cyanobacterial Contribution to Travertine Deposition in the Hoyoux River System, Belgium. Microbial Ecology, 2017, 74, 33-53.	1.4	7
51	Dynamics and emissions of N2O in groundwater: A review. Science of the Total Environment, 2017, 584-585, 207-218.	3.9	70
52	How phosphorus limitation can control climate-active gas sources and sinks. Journal of Marine Systems, 2017, 170, 42-49.	0.9	3
53	Nitrous oxide and methane seasonal variability in the epilimnion of a large tropical meromictic lake (Lake Kivu, East-Africa). Aquatic Sciences, 2017, 79, 209-218.	0.6	20
54	Calibration of hydroclimate proxies in freshwater bivalve shells from Central and West Africa. Geochimica Et Cosmochimica Acta, 2017, 208, 41-62.	1.6	32

#	Article	IF	CITATIONS
55	Shifts in the carbon dynamics in a tropical lowland river system (Tana River, Kenya) during flooded and non-flooded conditions. Biogeochemistry, 2017, 132, 141-163.	1.7	19
56	Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin (The Meuse River, Belgium). Biogeochemistry, 2017, 136, 191-211.	1.7	130
57	Preservation protocol for dimethylsulfoniopropionate and dimethylsulfoxide analysis in plant material of the Mediterranean seagrass Posidonia oceanica , and re-evaluation of dimethylsulfoniopropionate leaf content. Aquatic Botany, 2017, 143, 8-10.	0.8	13
58	Natural patches in Posidonia oceanica meadows: the seasonal biogeochemical pore water characteristics of two edge types. Marine Biology, 2017, 164, 1.	0.7	7
59	Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere, 2017, 168, 756-764.	4.2	34
60	Phytoplankton dynamics in the Congo River. Freshwater Biology, 2017, 62, 87-101.	1.2	49
61	Shift in the chemical composition of dissolved organic matter in the Congo River network. Biogeosciences, 2016, 13, 5405-5420.	1.3	85
62	Along-stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences, 2016, 13, 2727-2741.	1.3	66
63	Chemoautotrophy and anoxygenic photosynthesis within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Limnology and Oceanography, 2016, 61, 1424-1437.	1.6	26
64	Massive marine methane emissions from near-shore shallow coastal areas. Scientific Reports, 2016, 6, 27908.	1.6	121
65	Distributions and sea-to-air fluxes of nitrous oxide in the South China Sea and the West Philippines Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 115, 131-144.	0.6	16
66	The internal consistency of the North Sea carbonate system. Journal of Marine Systems, 2016, 157, 52-64.	0.9	10
67	Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Scientific Reports, 2015, 5, 13803.	1.6	80
68	Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers. Scientific Reports, 2015, 5, 15614.	1.6	85
69	River geochemistry, chemical weathering, and atmospheric <scp>C</scp> O ₂ consumption rates in the <scp>V</scp> irunga <scp>V</scp> olcanic <scp>P</scp> rovince (<scp>E</scp> ast) Tj ETQq1 1 0.784	43 1.⊕ rgBT	/@verlock 10
70	Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences, 2015, 12, 1561-1583.	1.3	75
71	Technical Note: Large overestimation of <i>p</i> CO ₂ calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 2015, 12, 67-78.	1.3	244
72	Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences, 2015, 12, 2077-2088.	1.3	38

		Alberto V Borges		
#	Article		IF	CITATIONS
73	Dynamics of greenhouse gases (CO ₂ ,) Tj ET Zambezi River and major tributaries, and their importance in the riverine carbon budget Biogeosciences, 2015, 12, 2431-2453.	Qq1 1 0.784314 r	gBT /Overlock 1 1.3	0 Tf 50 752 122
74				

#	Article	IF	CITATIONS
91	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	5.4	937
92	Particle export during a bloom of Emiliania huxleyi in the North-West European continental margin. Journal of Marine Systems, 2013, 109-110, S182-S190.	0.9	12
93	Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes. Frontiers in Plant Science, 2013, 4, 38.	1.7	38
94	Variability of North Sea pH and CO ₂ in response to North Atlantic Oscillation forcing. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1584-1592.	1.3	33
95	Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya. Biogeosciences, 2013, 10, 6911-6928.	1.3	35
96	A uniform, quality controlled Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2013, 5, 125-143.	3.7	158
97	Surface Ocean CO ₂ Atlas (SOCAT) gridded data products. Earth System Science Data, 2013, 5, 145-153.	3.7	101
98	Seasonal and interannual variations of community metabolism rates of a <i>Posidonia oceanica</i> seagrass meadow. Limnology and Oceanography, 2012, 57, 347-361.	1.6	69
99	Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya. Biogeosciences, 2012, 9, 2905-2920.	1.3	61
100	Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River) Tj ETQqO 0 0	rgBT /Ove 1.3	rloçk 10 Tf 50
101	Biogeochemistry of coastal seas and continental shelves – Including biogeochemistry during the International Polar Year. Estuarine, Coastal and Shelf Science, 2012, 100, 1-2.	0.9	8
102	The carbonate system in the North Sea: Sensitivity and model validation. Journal of Marine Systems, 2012, 102-104, 1-13.	0.9	85
103	Variability of Carbon Dioxide and Methane in the Epilimnion of Lake Kivu. , 2012, , 47-66.		8
104	Diffusive methane emissions to the atmosphere from Lake Kivu (Eastern Africa). Journal of Geophysical Research, 2011, 116, .	3.3	65
105	Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006). Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 111-127.	0.6	16
106	Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study. Journal of Experimental Marine Biology and Ecology, 2011, 410, 61-71.	0.7	55
107	Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment. Journal of Marine Systems, 2011, 85, 71-85.	0.9	20
108	Seasonal and inter-annual variability of air–sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Progress in Oceanography, 2011, 88, 59-77.	1.5	30

#	Article	IF	CITATIONS
109	Benthic remineralization in the northwest European continental margin (northern Bay of Biscay). Continental Shelf Research, 2011, 31, 644-658.	0.9	18
110	Carbon Dioxide and Methane Dynamics in Estuaries. , 2011, , 119-161.		150
111	Present Day Carbon Dioxide Fluxes in the Coastal Ocean and Possible Feedbacks Under Global Change. , 2011, , 47-77.		39
112	Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry, 2010, 100, 21-37.	1.7	81
113	Biogeochemical study of a coccolithophore bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004. Progress in Oceanography, 2010, 86, 317-336.	1.5	44
114	Spatiotemporal variations of <i>f</i> CO ₂ in the North Sea. Ocean Science, 2010, 6, 77-89.	1.3	44
115	Dissolved inorganic carbon dynamics and airâ€sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay). Global Biogeochemical Cycles, 2010, 24, .	1.9	19
116	Evaluation of sinks and sources of CO ₂ in the global coastal ocean using a spatiallyâ€explicit typology of estuaries and continental shelves. Geophysical Research Letters, 2010, 37, .	1.5	253
117	Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic—A model study, Part II: Carbon budget and fluxes. Continental Shelf Research, 2010, 30, 1701-1716.	0.9	43
118	Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences, 2009, 6, 2475-2493.	1.3	80
119	Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences, 2009, 6, 267-274.	1.3	169
120	Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science, 2009, 81, 114-122.	0.9	81
121	Seasonal Variability of Carbon Dioxide in the Rivers and Lagoons of Ivory Coast (West Africa). Estuaries and Coasts, 2009, 32, 246-260.	1.0	99
122	Effect of eutrophication on air–sea CO ₂ fluxes in the coastal Southern North Sea: a model study of the past 50 years. Global Change Biology, 2009, 15, 1040-1056.	4.2	69
123	Mechanisms controlling the air–sea flux in the North Sea. Continental Shelf Research, 2009, 29, 1801-1808.	0.9	46
124	Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 578-590.	0.6	500
125	Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume. BMC Ecology, 2008, 8, 15.	3.0	49
126	Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science, 2008, 77, 409-421.	0.9	83

#	Article	IF	CITATIONS
127	Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 2008, 22, .	1.9	812
128	Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar). Organic Geochemistry, 2008, 39, 1649-1658.	0.9	57
129	The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences, 2008, 5, 1259-1271.	1.3	130
130	Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania. Biogeosciences, 2008, 5, 141-155.	1.3	42
131	The Lateral Carbon Pump, and the European Carbon Balance. Ecological Studies, 2008, , 341-360.	0.4	5
132	Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Marine Ecology - Progress Series, 2008, 370, 53-67.	0.9	109
133	Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography, 2007, 52, 46-59.	1.6	90
134	Biogas (CO ₂ , O ₂ , dimethylsulfide) dynamics in spring Antarctic fast ice. Limnology and Oceanography, 2007, 52, 1367-1379.	1.6	127
135	ARTIFICIAL NEURAL NETWORK ANALYSIS OF FACTORS CONTROLLING ECOSYSTEM METABOLISM IN COASTAL SYSTEMS. , 2007, 17, S185-S196.		19
136	Rapid decline of the CO ₂ buffering capacity in the North Sea and implications for the North Atlantic Ocean. Global Biogeochemical Cycles, 2007, 21, .	1.9	97
137	Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi) Tj ETQq1 1	0.784314	rg <mark>BT</mark> /Overlo
138	Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania). Biogeosciences, 2007, 4, 311-322.	1.3	151
139	High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea. Marine Chemistry, 2007, 106, 161-173.	0.9	72
140	Carbon dioxide dynamics in rivers and coastal waters of the "big island―of Hawaii, USA, during baseline and heavy rain conditions. Aquatic Geochemistry, 2007, 13, 1-18.	1.5	32
141	Time series of the partial pressure of carbon dioxide (2001-2004) and preliminary inorganic carbon budget in the Scheldt plume (Belgian coastal waters). Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	28
142	Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow. Estuaries and Coasts, 2006, 29, 417-426.	1.0	108
143	Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science, 2006, 70, 375-387.	0.9	239
144	Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea. Limnology and Oceanography, 2006, 51, 2746-2762.	1.6	72

#	Article	IF	CITATIONS
145	Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries and Coasts, 2005, 28, 868-883.	1.7	103
146	Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?. Estuaries and Coasts, 2005, 28, 3-27.	1.7	374
147	Whole-system metabolism and CO ₂ fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences, 2005, 2, 43-60.	1.3	91
148	Controls of the surface water partial pressure of CO ₂ in the North Sea. Biogeosciences, 2005, 2, 323-334.	1.3	80
149	The carbon budget of the North Sea. Biogeosciences, 2005, 2, 87-96.	1.3	138
150	Response of primary production and calcification to changes ofpCO2during experimental blooms of the coccolithophoridEmiliania huxleyi. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	215
151	Budgeting sinks and sources of CO2in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	515
152	Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. Marine Ecology - Progress Series, 2005, 301, 23-41.	0.9	86
153	Carbon dynamics and CO ₂ air-sea exchanges in the eutrophied coastal waters of the Southern Bight of the North Sea: a modelling study. Biogeosciences, 2004, 1, 147-157.	1.3	25
154	Gas transfer velocities of CO ₂ in three European estuaries (Randers Fjord,Scheldt, and) Tj ETQqO O	OrgBT ∕Ov 1.6	erlock 10 Tf 238
155	Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries and Coasts, 2004, 27, 593-603.	1.7	205
156	The Portugal coastal counter current off NW Spain: new insights on its biogeochemical variability. Progress in Oceanography, 2003, 56, 281-321.	1.5	162
157	Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh,) Tj ETQq1 1 0.7 Cycles, 2003, 17, n/a-n/a.	784314 rg 1.9	BT /Overlock 144
158	Atmospheric CO2flux from mangrove surrounding waters. Geophysical Research Letters, 2003, 30, .	1.5	179
159	Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas. Journal of Geophysical Research, 2003, 108, .	3.3	55
160	Carbonate dissolution in the turbid and eutrophic Loire estuary. Marine Ecology - Progress Series, 2003, 259, 129-138.	0.9	111
161	Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast. Global Biogeochemical Cycles, 2002, 16, 13-1-13-13.	1.9	66
162	Aspects of dissolved inorganic carbon dynamics in the upwelling system off the Galician coast. Journal of Marine Systems, 2002, 32, 181-198.	0.9	22

20

#	Article	IF	CITATIONS
163	Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry, 2002, 59, 41-67.	1.7	95
164	European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles, 2001, 15, 569-576.	1.9	163
165	A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Research, 2001, 35, 1344-1347.	5.3	97
166	Title is missing!. Aquatic Geochemistry, 2001, 7, 267-273.	1.5	95
167	Short-term variations of the partial pressure of CO2 in surface waters of the Galician upwelling system. Progress in Oceanography, 2001, 51, 283-302.	1.5	27
168	Off-shelf fluxes of labile materials by an upwelling filament in the NW Iberian Upwelling System. Progress in Oceanography, 2001, 51, 321-337.	1.5	82
169	Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planètes =, 2000, 330, 761-768.	0.2	34
170	Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. Journal of Marine Systems, 1999, 19, 251-266.	0.9	107
171	Carbon Dioxide Emission from European Estuaries. , 1998, 282, 434-436.		480

172 Carbon Dioxide and Methane Emissions from Estuaries. , 0, , 187-207.