Zhixiong Ruan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997010/publications.pdf

Version: 2024-02-01

25 1,389 17 24
papers citations h-index g-index

26 26 26 1169
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Electroâ€Oxidative Coupling of Azoles with 2―and 3â€Haloindoles/Thiophenes Providing Access to 2/3â€Halo(Azolâ€1‥I)Indoles/Thiophenes. Advanced Synthesis and Catalysis, 2022, 364, 35-40.	4.3	10
2	8 Electrochemical Fluoroalkylation. , 2022, , .		1
3	Direct Electrochemical Synthesis of <scp>Sulfurâ€Containing</scp> Triazolium Inner Salts. Chinese Journal of Chemistry, 2021, 39, 942-946.	4.9	23
4	Late-stage azolation of benzylic C‒H bonds enabled by electrooxidation. Science China Chemistry, 2021, 64, 800-807.	8.2	48
5	Nitrogen-doped carbon dodecahedron embedded with cobalt nanoparticles for the direct electro-oxidation of glucose and efficient nonenzymatic glucose sensing. Talanta, 2021, 225, 121954.	5.5	30
6	Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. Journal of Organic Chemistry, 2021, 86, 16045-16058.	3.2	31
7	Electro-Oxidative C–N Bond Formation through Azolation of Indole Derivatives: An Access to 3-Substituent-2-(Azol-1-yl)indoles. Journal of Organic Chemistry, 2021, 86, 16059-16067.	3.2	12
8	Highly active catalyst using zeolitic imidazolate framework derived nano-polyhedron for the electro-oxidation of l-cysteine and amperometric sensing. Journal of Colloid and Interface Science, 2021, 603, 822-833.	9.4	11
9	Electro-oxidative C–H amination of heteroarenes with aniline derivatives <i>via</i> radical–radical cross coupling. Green Chemistry, 2021, 23, 8853-8858.	9.0	21
10	Electrochemical regioselective C–H selenylation of 2 <i>H</i> i>indazole derivatives. Organic and Biomolecular Chemistry, 2021, 20, 117-121.	2.8	29
11	Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through C–C bond cleavage. Green Chemistry, 2020, 22, 1099-1104.	9.0	62
12	Manganese- and rhenium-catalyzed C–H enaminylation: expedient access to novel indole–purine hybrids with anti-tumor bioactivities. Organic Chemistry Frontiers, 2020, 7, 3709-3714.	4.5	14
13	Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Organic Letters, 2020, 22, 4016-4020.	4.6	36
14	Catalyst-Free, Direct Electrochemical Tri- and Difluoroalkylation/Cyclization: Access to Functionalized Oxindoles and Quinolinones. Organic Letters, 2019, 21, 1237-1240.	4.6	110
15	Ruthenium(II)â€Catalyzed <i>meta</i> Câ^'H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie, 2017, 129, 2077-2081.	2.0	69
16	Ruthenium(II)â€Catalyzed <i>meta</i> Câ^'H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie - International Edition, 2017, 56, 2045-2049.	13.8	183
17	Manganeseâ€Catalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie, 2017, 129, 3220-3224.	2.0	96
18	Manganeseâ€Catalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie - International Edition, 2017, 56, 3172-3176.	13.8	253

#	Article	IF	CITATION
19	Nickel-catalyzed C–H activation of purine bases with alkyl halides. Chemical Communications, 2017, 53, 9113-9116.	4.1	36
20	A General Strategy for the Nickelâ€Catalyzed Câ^'H Alkylation of Anilines. Angewandte Chemie - International Edition, 2016, 55, 3153-3157.	13.8	117
21	Nickel-Catalyzed C–H Alkynylation of Anilines: Expedient Access to Functionalized Indoles and Purine Nucleobases. ACS Catalysis, 2016, 6, 4690-4693.	11.2	98
22	Novel Oxazolidinone Antibacterial Analogues with a Substituted Ligustrazine Câ€ring Unit. Chemical Biology and Drug Design, 2015, 86, 682-690.	3.2	12
23	Discovery of Bufadienolides as a Novel Class of ClC-3 Chloride Channel Activators with Antitumor Activities. Journal of Medicinal Chemistry, 2013, 56, 5734-5743.	6.4	66
24	3D-QSAR and molecular docking for the discovery of ketolide derivatives. Expert Opinion on Drug Discovery, 2013, 8, 427-444.	5.0	11
25	Bipiperidinyl derivatives of 23-hydroxybetulinic acid reverse resistance of HepG2/ADM and MCF-7/ADR cells. Anti-Cancer Drugs, 2013, 24, 441-454.	1.4	10