
Zhixiong Ruan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4997010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese atalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie - International Edition, 2017, 56, 3172-3176.	13.8	253
2	Ruthenium(II)â€Catalyzed <i>meta</i> Câ^H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie - International Edition, 2017, 56, 2045-2049.	13.8	183
3	A General Strategy for the Nickelâ€Catalyzed Câ^'H Alkylation of Anilines. Angewandte Chemie - International Edition, 2016, 55, 3153-3157.	13.8	117
4	Catalyst-Free, Direct Electrochemical Tri- and Difluoroalkylation/Cyclization: Access to Functionalized Oxindoles and Quinolinones. Organic Letters, 2019, 21, 1237-1240.	4.6	110
5	Nickel-Catalyzed C–H Alkynylation of Anilines: Expedient Access to Functionalized Indoles and Purine Nucleobases. ACS Catalysis, 2016, 6, 4690-4693.	11.2	98
6	Manganese atalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie, 2017, 129, 3220-3224.	2.0	96
7	Ruthenium(II)â€Catalyzed <i>meta</i> Câ^'H Mono―and Difluoromethylations by Phosphine/Carboxylate Cooperation. Angewandte Chemie, 2017, 129, 2077-2081.	2.0	69
8	Discovery of Bufadienolides as a Novel Class of ClC-3 Chloride Channel Activators with Antitumor Activities. Journal of Medicinal Chemistry, 2013, 56, 5734-5743.	6.4	66
9	Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through C–C bond cleavage. Green Chemistry, 2020, 22, 1099-1104.	9.0	62
10	Late-stage azolation of benzylic C‒H bonds enabled by electrooxidation. Science China Chemistry, 2021, 64, 800-807.	8.2	48
11	Nickel-catalyzed C–H activation of purine bases with alkyl halides. Chemical Communications, 2017, 53, 9113-9116.	4.1	36
12	Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Organic Letters, 2020, 22, 4016-4020.	4.6	36
13	Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. Journal of Organic Chemistry, 2021, 86, 16045-16058.	3.2	31
14	Nitrogen-doped carbon dodecahedron embedded with cobalt nanoparticles for the direct electro-oxidation of glucose and efficient nonenzymatic glucose sensing. Talanta, 2021, 225, 121954.	5.5	30
15	Electrochemical regioselective C–H selenylation of 2 <i>H</i> -indazole derivatives. Organic and Biomolecular Chemistry, 2021, 20, 117-121.	2.8	29
16	Direct Electrochemical Synthesis of <scp>Sulfur ontaining</scp> Triazolium Inner Salts. Chinese Journal of Chemistry, 2021, 39, 942-946.	4.9	23
17	Electro-oxidative C–H amination of heteroarenes with aniline derivatives <i>via</i> radical–radical cross coupling. Green Chemistry, 2021, 23, 8853-8858.	9.0	21
18	Manganese- and rhenium-catalyzed C–H enaminylation: expedient access to novel indole–purine hybrids with anti-tumor bioactivities. Organic Chemistry Frontiers, 2020, 7, 3709-3714.	4.5	14

ZHIXIONG RUAN

#	Article	IF	CITATIONS
19	Novel Oxazolidinone Antibacterial Analogues with a Substituted Ligustrazine Câ€ring Unit. Chemical Biology and Drug Design, 2015, 86, 682-690.	3.2	12
20	Electro-Oxidative C–N Bond Formation through Azolation of Indole Derivatives: An Access to 3-Substituent-2-(Azol-1-yl)indoles. Journal of Organic Chemistry, 2021, 86, 16059-16067.	3.2	12
21	3D-QSAR and molecular docking for the discovery of ketolide derivatives. Expert Opinion on Drug Discovery, 2013, 8, 427-444.	5.0	11
22	Highly active catalyst using zeolitic imidazolate framework derived nano-polyhedron for the electro-oxidation of l-cysteine and amperometric sensing. Journal of Colloid and Interface Science, 2021, 603, 822-833.	9.4	11
23	Bipiperidinyl derivatives of 23-hydroxybetulinic acid reverse resistance of HepG2/ADM and MCF-7/ADR cells. Anti-Cancer Drugs, 2013, 24, 441-454.	1.4	10
24	Electroâ€Oxidative Coupling of Azoles with 2―and 3â€Haloindoles/Thiophenes Providing Access to 2/3â€Halo(Azolâ€1â€Yl)Indoles/Thiophenes. Advanced Synthesis and Catalysis, 2022, 364, 35-40.	4.3	10
25	8 Electrochemical Fluoroalkylation. , 2022, , .		1