Amelie Fradet-Turcotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4996350/publications.pdf

Version: 2024-02-01

39 papers

4,807 citations

23 h-index

279778

315719 38 g-index

46 all docs

46 docs citations

46 times ranked

7797 citing authors

#	Article	IF	Citations
1	Oncogenic ZMYND11-MBTD1 fusion protein anchors the NuA4/TIP60 histone acetyltransferase complex to the coding region of active genes. Cell Reports, 2022, 39, 110947.	6.4	5
2	ActiveDriverDB: Interpreting Genetic Variation in Human and Cancer Genomes Using Post-translational Modification Sites and Signaling Networks (2021 Update). Frontiers in Cell and Developmental Biology, 2021, 9, 626821.	3.7	12
3	Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Frontiers in Cell and Developmental Biology, 2021, 9, 729338.	3.7	7
4	Two redundant ubiquitinâ€dependent pathways of BRCA1 localization to DNA damage sites. EMBO Reports, 2021, 22, e53679.	4.5	11
5	The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. Journal of Virology, 2019, 93, .	3.4	16
6	Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19552-19562.	7.1	47
7	ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Research, 2018, 46, D901-D910.	14.5	82
8	Virus DNA Replication and the Host DNA Damage Response. Annual Review of Virology, 2018, 5, 141-164.	6.7	123
9	A Screen for Epstein-Barr Virus Proteins That Inhibit the DNA Damage Response Reveals a Novel Histone Binding Protein. Journal of Virology, 2018, 92, .	3.4	30
10	Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR–Cas9 genome-editing efficiency. Nature Biotechnology, 2018, 36, 95-102.	17.5	206
11	The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. ELife, 2017, 6, .	6.0	44
12	The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular Cell, 2016, 62, 409-421.	9.7	198
13	BRCA2 functions: from DNA repair to replication fork stabilization. Endocrine-Related Cancer, 2016, 23, T1-T17.	3.1	58
14	The structural basis of modified nucleosome recognition by 53BP1. Nature, 2016, 536, 100-103.	27.8	201
15	Abstract PR03: High-resolution detection of fitness genes and genotype-specific cancer vulnerabilities with CRISPR-Cas9 screens. , 2016, , .		O
16	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	28.9	1,339
17	A Quantitative and High-Throughput Assay of Human Papillomavirus DNA Replication. Methods in Molecular Biology, 2015, 1249, 305-316.	0.9	5
18	Methods to Assess the Nucleocytoplasmic Shuttling of the HPV E1 Helicase and Its Effects on Cellular Proliferation and Induction of a DNA Damage Response. Methods in Molecular Biology, 2015, 1249, 67-80.	0.9	4

#	Article	IF	CITATIONS
19	Mitosis Inhibits DNA Double-Strand Break Repair to Guard Against Telomere Fusions. Science, 2014, 344, 189-193.	12.6	280
20	RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20982-20987.	7.1	73
21	A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Molecular Cell, 2013, 49, 872-883.	9.7	742
22	53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 2013, 499, 50-54.	27.8	580
23	Inhibition of Human Papillomavirus DNA Replication by an E1-Derived p80/UAF1-Binding Peptide. Journal of Virology, 2012, 86, 3486-3500.	3.4	17
24	Tandem Protein Interaction Modules Organize the Ubiquitin-Dependent Response to DNA Double-Strand Breaks. Molecular Cell, 2012, 47, 383-395.	9.7	124
25	Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 560-567.	2.5	6
26	Structure-Based Analysis of the Interaction between the Simian Virus 40 T-Antigen Origin Binding Domain and Single-Stranded DNA. Journal of Virology, 2011, 85, 818-827.	3.4	12
27	A Conserved Amphipathic Helix in the N-Terminal Regulatory Region of the Papillomavirus E1 Helicase Is Required for Efficient Viral DNA Replication. Journal of Virology, 2011, 85, 5287-5300.	3.4	23
28	Nuclear Accumulation of the Papillomavirus E1 Helicase Blocks S-Phase Progression and Triggers an ATM-Dependent DNA Damage Response. Journal of Virology, 2011, 85, 8996-9012.	3.4	124
29	Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology, 2010, 399, 65-76.	2.4	42
30	Nuclear Export of Human Papillomavirus Type 31 E1 Is Regulated by Cdk2 Phosphorylation and Required for Viral Genome Maintenance. Journal of Virology, 2010, 84, 11747-11760.	3.4	47
31	Proteasomal Degradation of the Papillomavirus E2 Protein Is Inhibited by Overexpression of Bromodomain-Containing Protein 4. Journal of Virology, 2009, 83, 4127-4139.	3.4	57
32	Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. Virology, 2009, 395, 190-201.	2.4	11
33	Human Papillomavirus E1 Helicase Interacts with the WD Repeat Protein p80 To Promote Maintenance of the Viral Genome in Keratinocytes. Journal of Virology, 2008, 82, 1271-1283.	3.4	41
34	p53 and TFIIE $\hat{l}\pm$ share a common binding site on the Tfb1/p62 subunit of TFIIH. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 106-111.	7.1	45
35	Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19541-19546.	7.1	100
36	Quantitative Analysis of the Binding of Simian Virus 40 Large T Antigen to DNA. Journal of Virology, 2007, 81, 9162-9174.	3.4	23

#	Article	IF	CITATIONS
37	Model for T-Antigen-Dependent Melting of the Simian Virus 40 Core Origin Based on Studies of the Interaction of the Beta-Hairpin with DNA. Journal of Virology, 2007, 81, 4808-4818.	3.4	28
38	Recent advances in the search for antiviral agents against human papillomaviruses. Antiviral Therapy, 2007, 12, 431-51.	1.0	10
39	Recent Advances in the Search for Antiviral Agents against Human Papillomaviruses. Antiviral Therapy, 2007, 12, 431-451.	1.0	24