Somnath De

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4995516/publications.pdf

Version: 2024-02-01

		1307594	1372567	
11	159	7	10	
papers	citations	h-index	g-index	
11	11	11	89	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Early Prediction of Lean Blowout from Chemiluminescence Time Series Data. Combustion Science and Technology, 2022, 194, 1108-1135.	2.3	10
2	Early detection of lean blowout using recurrence network for varying degrees of premixedness. Chaos, 2022, 32, .	2.5	1
3	Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame. Chaos, 2021, 31, 033117.	2.5	5
4	Early detection of lean blowout in a combustor using symbolic analysis of colour images. Measurement: Journal of the International Measurement Confederation, 2021, 186, 110113.	5.0	11
5	Use of Flame Color and Chemiluminescence for Early Detection of Lean Blowout in Gas Turbine Combustors at Different Levels of Fuel–Air Premixing. Combustion Science and Technology, 2020, 192, 933-957.	2.3	12
6	Detection and classification of lean blow-out and thermoacoustic instability in turbulent combustors. Applied Thermal Engineering, 2020, 180, 115808.	6.0	14
7	Characterization of laminar flame using high speed camera and spectrometer. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	1.3	0
8	Identification and early prediction of lean blowout in premixed flames. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1 .	1.3	4
9	Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor. Chaos, 2020, 30, 043115.	2.5	20
10	Investigation of flame behavior and dynamics prior to lean blowout in a combustor with varying mixedness of reactants for the early detection of lean blowout. International Journal of Spray and Combustion Dynamics, 2019, 11, 175682771881251.	1.0	13
11	Heat Transfer Enhancement and Entropy Generation in a Square Enclosure in the Presence of Adiabatic and Isothermal Blocks. Numerical Heat Transfer; Part A: Applications, 2013, 64, 577-596.	2.1	69