Birgitta Henriques-Normark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4995205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Disease and Immunosuppression Increase the Risk for Nonvaccine Serotype Pneumococcal Disease: A Nationwide Population-based Study. Clinical Infectious Diseases, 2022, 74, 1338-1349.	2.9	8
2	Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization. Oncogene, 2022, 41, 2173-2186.	2.6	4
3	Bacterial meningitis: Aetiology, risk factors, disease trends and severe sequelae during 50 years in Sweden. Journal of Internal Medicine, 2022, 292, 350-364.	2.7	8
4	Membrane particles evoke a serotype-independent cross-protection against pneumococcal infection that is dependent on the conserved lipoproteins MalX and PrsA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
5	Biofilm interfacial acidity evaluation by pH-Responsive luminescent nanoparticle films. Biosensors and Bioelectronics, 2021, 171, 112732.	5.3	13
6	Experimental Model for Studies of Pneumococcal Colonization in Older Adults. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 539-540.	2.5	1
7	Clarithromycin impairs tissue-resident memory and Th17 responses to macrolide-resistant Streptococcus pneumoniae infections. Journal of Molecular Medicine, 2021, 99, 817-829.	1.7	4
8	Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 1122-1129.	0.7	72
9	Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with β-actin. PLoS Pathogens, 2021, 17, e1009432.	2.1	14
10	Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643326.	1.8	39
11	RNA thermosensors facilitate Streptococcus pneumoniae and Haemophilus influenzae immune evasion. PLoS Pathogens, 2021, 17, e1009513.	2.1	8
12	Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. The Lancet Digital Health, 2021, 3, e360-e370.	5.9	260
13	Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. Journal of Global Antimicrobial Resistance, 2021, 25, 5-7.	0.9	27
14	THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
15	The Role of Minor Pilins in Assembly and Function of the Competence Pilus of Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2021, 11, 808601.	1.8	5
16	Lysogeny in Streptococcus pneumoniae. Microorganisms, 2020, 8, 1546.	1.6	10
17	Capillary leakage provides nutrients and antioxidants for rapid pneumococcal proliferation in influenza-infected lower airways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31386-31397.	3.3	28
18	The Bactericidal Fatty Acid Mimetic 2CCA-1 Selectively Targets Pneumococcal Extracellular Polyunsaturated Fatty Acid Metabolism. MBio, 2020, 11, .	1.8	2

#	Article	IF	CITATIONS
19	The impact of the ancillary pilusâ€1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Molecular Microbiology, 2020, 113, 650-658.	1.2	12
20	Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate. Scientific Reports, 2020, 10, 3670.	1.6	34
21	Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer. Cell Host and Microbe, 2020, 27, 544-555.e3.	5.1	53
22	The rise of hyperâ€virulence. Journal of Internal Medicine, 2020, 287, 336-338.	2.7	2
23	Flame-Made Calcium Phosphate Nanoparticles with High Drug Loading for Delivery of Biologics. Molecules, 2020, 25, 1747.	1.7	18
24	Reduced <i>In Vitro</i> Susceptibility of Streptococcus pyogenes to β-Lactam Antibiotics Associated with Mutations in the <i>pbp2x</i> Gene Is Geographically Widespread. Journal of Clinical Microbiology, 2020, 58, .	1.8	55
25	Gradâ€seq in a Gramâ€positive bacterium reveals exonucleolytic <scp>sRNA</scp> activation in competence control. EMBO Journal, 2020, 39, e103852.	3.5	66
26	Mannose receptorâ€derived peptides neutralize poreâ€forming toxins and reduce inflammation and development of pneumococcal disease. EMBO Molecular Medicine, 2020, 12, e12695.	3.3	19
27	Genomic Characterization of the Emerging Pathogen Streptococcus pseudopneumoniae. MBio, 2019, 10,	1.8	18
28	Emerging concepts in the pathogenesis of the <i>Streptococcus pneumoniae</i> : From nasopharyngeal colonizer to intracellular pathogen. Cellular Microbiology, 2019, 21, e13077.	1.1	79
29	Serotype and molecular diversity of nasopharyngeal Streptococcus pneumoniae isolates from children before and after vaccination with the ten-valent pneumococcal conjugate vaccine (PCV10) in Ethiopia. BMC Infectious Diseases, 2019, 19, 409.	1.3	12
30	IVIS Spectrum CT to Image the Progression of Pneumococcal Infections In Vivo. Methods in Molecular Biology, 2019, 1968, 195-202.	0.4	4
31	Luminescent CeO2:Eu3+ nanocrystals for robust in situ H2O2 real-time detection in bacterial cell cultures. Biosensors and Bioelectronics, 2019, 132, 286-293.	5.3	24
32	Immunofluorescent Staining and High-Resolution Microscopy to Study the Pneumococcal Cell. Methods in Molecular Biology, 2019, 1968, 35-39.	0.4	0
33	The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Frontiers in Microbiology, 2019, 10, 576.	1.5	30
34	In Vivo Mouse Models to Study Pneumococcal Host Interaction and Invasive Pneumococcal Disease. Methods in Molecular Biology, 2019, 1968, 173-181.	0.4	3
35	High-Resolution and Super-Resolution Immunofluorescent Microscopy Ex Vivo to Study Pneumococcal Interactions with the Host. Methods in Molecular Biology, 2019, 1968, 53-59.	0.4	0
36	Gram-Positive Type IV Pili and Competence. Microbiology Spectrum, 2019, 7, .	1.2	10

#	Article	IF	CITATIONS
37	Gram-Positive Type IV Pili and Competence. , 2019, , 129-135.		0
38	Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival. Nature Microbiology, 2019, 4, 62-70.	5.9	77
39	Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax, 2019, 74, 473-482.	2.7	125
40	Immunomodulatory Effects of Pneumococcal Extracellular Vesicles on Cellular and Humoral Host Defenses. MBio, 2018, 9, .	1.8	72
41	Receptor Blockade: A Novel Approach to Protect the Brain From Pneumococcal Invasion. Journal of Infectious Diseases, 2018, 218, 476-484.	1.9	15
42	Separation of pathogenic bacteria by chain length. Analytica Chimica Acta, 2018, 1000, 223-231.	2.6	36
43	Reply to Theilacker et al. Clinical Infectious Diseases, 2018, 66, 1642-1643.	2.9	2
44	Eosinophilia and reduced STAT3 signaling affect neutrophil cell death in autosomalâ€dominant Hyperâ€lgE syndrome. European Journal of Immunology, 2018, 48, 1975-1988.	1.6	6
45	Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. ELife, 2018, 7, .	2.8	125
46	Clinical relevance of bacterial resistance in lower respiratory tract infection in primary care: secondary analysis of a multicentre European trial. British Journal of General Practice, 2018, 68, e627-e632.	0.7	2
47	Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification. Nature Communications, 2018, 9, 3398.	5.8	44
48	pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. Journal of Experimental Medicine, 2017, 214, 1619-1630.	4.2	79
49	Effect of high-valency pneumococcal conjugate vaccines on invasive pneumococcal disease in children in SpIDnet countries: an observational multicentre study. Lancet Respiratory Medicine,the, 2017, 5, 648-656.	5.2	96
50	Vitamin D Promotes Pneumococcal Killing and Modulates Inflammatory Responses in Primary Human Neutrophils. Journal of Innate Immunity, 2017, 9, 375-386.	1.8	67
51	The Pneumocell-study: Vaccination of IgG1- and IgG2-deficient patients with Prevnar13. Vaccine, 2017, 35, 2654-2660.	1.7	2
52	Comparison of the Impact of Pneumococcal Conjugate Vaccine 10 or Pneumococcal Conjugate Vaccine 13 on Invasive Pneumococcal Disease in Equivalent Populations. Clinical Infectious Diseases, 2017, 65, 1780-1790.e1.	2.9	123
53	Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method. Cell Reports, 2017, 20, 251-263.	2.9	57
54	Structure of the competence pilus major pilin ComGC in Streptococcus pneumoniae. Journal of Biological Chemistry, 2017, 292, 14134-14146.	1.6	27

#	Article	IF	CITATIONS
55	N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2016, 6, 158.	1.8	7
56	Pneumococcal Carriage in Children under Five Years in Uganda-Will Present Pneumococcal Conjugate Vaccines Be Appropriate?. PLoS ONE, 2016, 11, e0166018.	1.1	23
57	The crystal structure of the major pneumococcal autolysin LytA in complex with a large peptidoglycan fragment reveals the pivotal role of glycans for lytic activity. Molecular Microbiology, 2016, 101, 954-967.	1.2	14
58	Variation in Inflammatory Response during Pneumococcal Infection Is Influenced by Host-Pathogen Interactions but Associated with Animal Survival. Infection and Immunity, 2016, 84, 894-905.	1.0	7
59	The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation. Scientific Reports, 2016, 6, 32371.	1.6	27
60	lytA-based identification methods can misidentify Streptococcus pneumoniae. Diagnostic Microbiology and Infectious Disease, 2016, 85, 141-148.	0.8	53
61	Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. European Respiratory Journal, 2016, 47, 1208-1218.	3.1	125
62	Streptococcus pneumoniae Senses a Human-like Sialic Acid Profile via the Response Regulator CiaR. Cell Host and Microbe, 2016, 20, 307-317.	5.1	49
63	Unaltered pneumococcal carriage prevalence due to expansion of non-vaccine types of low invasive potential 8 years after vaccine introduction in Stockholm, Sweden. Vaccine, 2016, 34, 4565-4571.	1.7	64
64	Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation. Infection and Immunity, 2016, 84, 3445-3457.	1.0	57
65	Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?. MBio, 2016, 7, .	1.8	62
66	How Does Streptococcus pneumoniae Invade the Brain?. Trends in Microbiology, 2016, 24, 307-315.	3.5	61
67	Toll-Like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells. MBio, 2016, 7, e00168-16.	1.8	20
68	Pneumococcal meningitis is promoted by single cocci expressing pilus adhesin RrgA. Journal of Clinical Investigation, 2016, 126, 2821-2826.	3.9	38
69	Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity. PLoS ONE, 2016, 11, e0160734.	1.1	16
70	BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAMlow CD11bhigh Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming. PLoS Pathogens, 2015, 11, e1005206.	2.1	31
71	Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae. Genomics Data, 2015, 4, 57-59.	1.3	27
72	Respiratory viruses associated with community-acquired pneumonia in children: matched case–control study. Thorax, 2015, 70, 847-853.	2.7	111

#	Article	IF	CITATIONS
73	Streptococcal M1 Strikes by Neutralizing Cathelicidins. Cell Host and Microbe, 2015, 18, 390-391.	5.1	0
74	Reply to Arends and Harkisoen. Clinical Infectious Diseases, 2015, 60, 324-325.	2.9	0
75	UlaR activates expression of the ula operon in Streptococcus pneumoniae in the presence of ascorbic acid. Microbiology (United Kingdom), 2015, 161, 41-49.	0.7	20
76	Improvement of CRB-65 as a prognostic tool in adult patients with community-acquired pneumonia. BMJ Open Respiratory Research, 2014, 1, e000038.	1.2	31
77	Clinical Efficacy of Polyspecific Intravenous Immunoglobulin Therapy in Patients With Streptococcal Toxic Shock Syndrome: A Comparative Observational Study. Clinical Infectious Diseases, 2014, 59, 851-857.	2.9	186
78	Structural and Functional Insights into Peptidoglycan Access for the Lytic Amidase LytA of Streptococcus pneumoniae. MBio, 2014, 5, e01120-13.	1.8	48
79	Clinical manifestations of invasive pneumococcal disease by vaccine and non-vaccine types. European Respiratory Journal, 2014, 44, 1646-1657.	3.1	43
80	Prevalence of community-acquired bacteraemia in Guinea-Bissau: an observational study. BMC Infectious Diseases, 2014, 14, 3859.	1.3	26
81	Bacterial vaccines and antibiotic resistance. Upsala Journal of Medical Sciences, 2014, 119, 205-208.	0.4	19
82	Intraclonal Variations Among Streptococcus pneumoniae Isolates Influence the Likelihood of Invasive Disease in Children. Journal of Infectious Diseases, 2014, 209, 377-388.	1.9	61
83	Adult zebrafish model for pneumococcal pathogenesis. Developmental and Comparative Immunology, 2014, 42, 345-353.	1.0	33
84	Sinusitis and Pneumonia Hospitalization After Introduction of Pneumococcal Conjugate Vaccine. Pediatrics, 2014, 134, e1528-e1536.	1.0	60
85	The Pneumococcus: Epidemiology, Microbiology, and Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010215-a010215.	2.9	330
86	Pilus Adhesin RrgA Interacts with Complement Receptor 3, Thereby Affecting Macrophage Function and Systemic Pneumococcal Disease. MBio, 2013, 4, e00535-12.	1.8	41
87	LytA, Major Autolysin of Streptococcus pneumoniae, Requires Access to Nascent Peptidoglycan. Journal of Biological Chemistry, 2012, 287, 11018-11029.	1.6	107
88	Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host. Experimental Cell Research, 2010, 316, 1408-1414.	1.2	59
89	Clinical Isolates of <i>Streptococcus pneumoniae</i> Bind the Complement Inhibitor C4b-Binding Protein in a PspC Allele-Dependent Fashion. Journal of Immunology, 2009, 182, 7865-7877.	0.4	75
90	<i>Streptococcus pneumoniae</i> evades human dendritic cell surveillance by pneumolysin expression. EMBO Molecular Medicine, 2009, 1, 211-222.	3.3	62

#	Article	IF	CITATIONS
91	The rise and fall of bacterial clones: Streptococcus pneumoniae. Nature Reviews Microbiology, 2008, 6, 827-837.	13.6	84
92	Sortaseâ€mediated assembly and surface topology of adhesive pneumococcal pili. Molecular Microbiology, 2008, 70, 595-607.	1.2	65
93	Streptococcus pneumoniaeContains 3rlrAPilus Variants That Are Clonally Related. Journal of Infectious Diseases, 2008, 197, 888-896.	1.9	94
94	Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. Journal of Experimental Medicine, 2008, 205, 117-131.	4.2	244
95	Virulence in Mice of Pneumococcal Clonal Types with Known Invasive Disease Potential in Humans. Journal of Infectious Diseases, 2005, 192, 791-800.	1.9	92
96	Capsular Expression inStreptococcus pneumoniaeNegatively Affects Spontaneous and Antibioticâ€Induced Lysis and Contributes to Antibiotic Tolerance. Journal of Infectious Diseases, 2004, 189, 328-338.	1.9	75