Torben Krogh Mikkelsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel. Atmospheric Measurement Techniques, 2022, 15, 1355-1372.	1.2	5
2	A Model for the Spectrum of the Lateral Velocity Component from Mesoscale to Microscale and Its Application to Wind-Direction Variation. Boundary-Layer Meteorology, 2021, 178, 415-434.	1.2	3
3	Turbulence Characteristics of Wind-Speed Fluctuations in the Presence of Open Cells: A Case Study. Boundary-Layer Meteorology, 2019, 171, 191-212.	1.2	8
4	Power curve and wake analyses of the Vestas multi-rotor demonstrator. Wind Energy Science, 2019, 4, 251-271.	1.2	52
5	Evaluation of the LINCOM wind field reconstruction method with simulations and full-scale measurements. Journal of Physics: Conference Series, 2018, 1037, 052008.	0.3	3
6	Inflow characterization using measurements from the SpinnerLidar: the ScanFlow experiment. Journal of Physics: Conference Series, 2018, 1037, 052027.	0.3	4
7	Scanning Lidar Spatial Calibration and Alignment Method for Wind Turbine Wake Characterization. , 2017, , .		9
8	Scaling of turbulence spectra measured in strong shear flow near the Earth's surface. Physica Scripta, 2017, 92, 124002.	1.2	17
9	Full-scale observation of the flow downstream of a suspension bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171, 261-272.	1.7	14
10	Lidars for Wind Tunnels - an IRPWind Joint Experiment Project. Energy Procedia, 2017, 137, 339-345.	1.8	2
11	Measurement methodologies for wind energy based on ground-level remote sensing. , 2017, , 29-56.		5
12	Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel. Wind Energy Science, 2017, 2, 329-341.	1.2	20
13	Long-Range WindScanner System. Remote Sensing, 2016, 8, 896.	1.8	56
14	Investigation of wake interaction using fullâ€scale lidar measurements and large eddy simulation. Wind Energy, 2016, 19, 1535-1551.	1.9	25
15	Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	74
16	Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners. Journal of Physics: Conference Series, 2016, 753, 032032.	0.3	5
17	Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence. Experiments in Fluids, 2016, 57, 1.	1.1	20
18	Variations of the Wake Height over the Bolund Escarpment Measured by a Scanning Lidar. Boundary-Layer Meteorology, 2016, 159, 147-159.	1.2	26

2

#	Article	IF	CITATIONS
19	Assessment of Wind Conditions at a Fjord Inlet by Complementary Use of Sonic Anemometers and Lidars. Energy Procedia, 2015, 80, 411-421.	1.8	4
20	Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering. Journal of Atmospheric and Oceanic Technology, 2014, 31, 930-937.	0.5	21
21	Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an Inland Suburban Area. Boundary-Layer Meteorology, 2014, 150, 167-184.	1.2	27
22	Lidar-based Research and Innovation at DTU Wind Energy – a Review. Journal of Physics: Conference Series, 2014, 524, 012007.	0.3	31
23	Laser scanning of a recirculation zone on the Bolund escarpment. Journal of Physics: Conference Series, 2014, 555, 012066.	0.3	3
24	Precision and shortcomings of yaw error estimation using spinnerâ€based light detection and ranging. Wind Energy, 2013, 16, 353-366.	1.9	42
25	Retrieving wind statistics from average spectrum of continuous-wave lidar. Atmospheric Measurement Techniques, 2013, 6, 1673-1683.	1.2	31
26	A spinnerâ€integrated wind lidar for enhanced wind turbine control. Wind Energy, 2013, 16, 625-643.	1.9	110
27	Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management. Remote Sensing, 2013, 5, 4280-4303.	1.8	42
28	A Bistatic Sodar for Precision Wind Profiling in Complex Terrain. Journal of Atmospheric and Oceanic Technology, 2012, 29, 1052-1061.	0.5	9
29	Improving Yaw Alignment Using Spinner Based LIDAR. , 2011, , .		14
30	On the requirements to establish a European radiological preparedness for malicious airborne dispersion scenarios. Radioprotection, 2011, 46, S589-S594.	0.5	2
31	Planning sensor locations for the detection of radioactive plumes for Norway and the Balkans. Radioprotection, 2011, 46, S55-S61.	0.5	4
32	Experimental evaluation of a model for the influence of coherent wind lidars on their remote measurements of atmospheric boundary-layer turbulence. Proceedings of SPIE, 2011, , .	0.8	2
33	Editorial: Trends in wind energy. Journal of Renewable and Sustainable Energy, 2011, 3, .	0.8	8
34	Atmospheric boundary layer wind profile at a flat coastal site – wind speed lidar measurements and mesoscale modeling results. Advances in Science and Research, 2011, 6, 155-159.	1.0	10
35	Concentration Fluctuations in Smoke Plumes Released Near the Ground. Boundary-Layer Meteorology, 2010, 137, 345-372.	1.2	7
36	Data assimilation approaches in the EURANOS project. Radioprotection, 2010, 45, S123-S131.	0.5	2

#	Article	IF	CITATIONS
37	Comparison of NWP prognosis and local monitoring data from NPPs. Radioprotection, 2010, 45, S97-S111.	0.5	3
38	Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer. Meteorologische Zeitschrift, 2009, 18, 135-140.	0.5	79
39	Requirements for estimation of doses from contaminants dispersed by a †dirty bomb' explosion in an urban area. Journal of Environmental Radioactivity, 2009, 100, 1005-1011.	0.9	27
40	Offshore wind profiling using light detection and ranging measurements. Wind Energy, 2009, 12, 105-124.	1.9	121
41	Calculating the consequences of recovery, a European model for inhabited areas. Radioprotection, 2009, 44, 407-412.	0.5	8
42	Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorologische Zeitschrift, 2009, 18, 281-287.	0.5	43
43	The VetMet Veterinary Decision Support System for Airborne Animal Diseases. NATO Security Through Science Series C: Environmental Security, 2008, , 199-207.	0.1	1
44	Estimation of health hazards resulting from a radiological terrorist attack in a city. Radiation Protection Dosimetry, 2008, 131, 297-307.	0.4	38
45	Chapter 2.16 Medium-range puff growth. Developments in Environmental Science, 2007, , 243-252.	0.5	7
46	Offshore winds using remote sensing techniques. Journal of Physics: Conference Series, 2007, 75, 012038.	0.3	0
47	Probabilistic risk assessment for long-range atmospheric transport of radionuclides. Journal of Environmental Radioactivity, 2007, 96, 110-115.	0.9	5
48	Wind lidar evaluation at the Danish wind test site in HÃ,vsÃ,re. Wind Energy, 2006, 9, 87-93.	1.9	145
49	K-model description of probabilistic long-range atmospheric transport in the Northern Hemisphere. Atmospheric Environment, 2006, 40, 4352-4369.	1.9	6
50	Can the confidence in long range atmospheric transport models be increased? The pan-european experience of ensemble. Radiation Protection Dosimetry, 2004, 109, 19-24.	0.4	18
51	Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site. Radiation Protection Dosimetry, 2004, 108, 161-168.	0.4	15
52	Ensemble dispersion forecasting—Part I: concept, approach and indicators. Atmospheric Environment, 2004, 38, 4607-4617.	1.9	152
53	Ensemble dispersion forecasting—Part II: application and evaluation. Atmospheric Environment, 2004, 38, 4619-4632.	1.9	81
54	Airborne transmission of footâ€andâ€mouth disease virus from Burnside Farm, Heddonon―theâ€Wall, Northumberland, during the 2001 epidemic in the United Kingdom. Veterinary Record, 2003, 152, 525-533.	0.2	61

#	Article	IF	CITATIONS
55	Atmospheric dispersion of argon-41 from a nuclear research reactor: measurement and modelling of plume geometry and gamma radiation field. International Journal of Environment and Pollution, 2003, 20, 47.	0.2	8
56	Investigation of airborne foot-and-mouth disease virus transmission during low-wind conditions in the early phase of the UK 2001 epidemic. Atmospheric Chemistry and Physics, 2003, 3, 2101-2110.	1.9	57
57	Similarity Scaling Of Surface-Released Smoke Plumes. Boundary-Layer Meteorology, 2002, 105, 483-505.	1.2	17
58	Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness. Physics and Chemistry of the Earth, 2001, 26, 93-97.	0.3	55
59	METRODOS: Meteorological preprocessor chain. Physics and Chemistry of the Earth, 2001, 26, 105-110.	0.3	10
60	LINCOM wind flow model: application to complex terrain with thermal stratification. Physics and Chemistry of the Earth, 2001, 26, 839-842.	0.3	8
61	A probabilistic dispersion model applied to the long-range transport of radionuclides from the Chernobyl accident. Atmospheric Environment, 1999, 33, 3271-3279.	1.9	10
62	An Overview of MADONA: A Multinational Field Study of High-Resolution Meteorology and Diffusion over Complex Terrain. Bulletin of the American Meteorological Society, 1999, 80, 5-19.	1.7	27
63	Testing the importance of accurate meteorological input fields and parameterizations in atmospheric transport modelling using dream - validation against ETEX-1. Atmospheric Environment, 1998, 32, 4167-4186.	1.9	38
64	An Operational Real-Time Model Chain for Now- and Forecasting of Radioactive Atmospheric Releases on the Local Scale. , 1998, , 501-508.		3
65	A Fast Model for Mean and Turbulent Wind Characteristics over Terrain with Mixed Surface Roughness. Radiation Protection Dosimetry, 1997, 73, 257-260.	0.4	22
66	MET-RODOS: A Comprehensive Atmospheric Dispersion Module. Radiation Protection Dosimetry, 1997, 73, 45-55.	0.4	35
67	Lidar calibration experiments. Applied Physics B: Lasers and Optics, 1997, 64, 355-361.	1.1	20
68	Using a combination of two models in tracer simulations. Mathematical and Computer Modelling, 1996, 23, 99-115.	2.0	19
69	Test of a New Concentration Fluctuation Model for Decision-Makers. , 1996, , 285-293.		4
70	Validation of a Combination of Two Models for Long-Range Tracer Simulations. , 1996, , 461-469.		4
71	Modelling Diffusion and Dispersion of Pollutants. ERCOFTAC Series, 1995, , 145-164.	0.1	0
72	Experimental Evaluation of a PC-Based Real-Time Dispersion Modeling System for Accidental Releases in		1

Complex Terrain. , 1994, , 383-394.

TORBEN KROGH MIKKELSEN

#	Article	IF	CITATIONS
73	Lidar measurements of plume statistics. Boundary-Layer Meteorology, 1993, 62, 361-378.	1.2	24
74	Dispersion Scenarios Over Complex Terrain. Radiation Protection Dosimetry, 1993, 50, 249-255.	0.4	2
75	Estimation of Horizontal Diffusion from Oblique Aerial Photographs of Smoke Clouds. Journal of Atmospheric and Oceanic Technology, 1991, 8, 873-878.	0.5	2
76	Wind stress measurements during the Tower Ocean Wave and Radar Dependence Experiment. Journal of Geophysical Research, 1988, 93, 13913-13923.	3.3	43
77	Diffusion of charged particles in turbulent magnetoplasmas. Plasma Physics and Controlled Fusion, 1987, 29, 825-856.	0.9	46
78	Diffusion of gaussian puffs. , 1987, 113, 81.		11
79	Clumps in drift wave turbulence. Plasma Physics and Controlled Fusion, 1986, 28, 1025-1041.	0.9	9
80	Turbulent diffusion in two-dimensional, strongly magnetized plasmas. Journal of Plasma Physics, 1985, 34, 77-94.	0.7	17
81	Large-Scale Spectral Structure with a Gap in the Stably Stratified Atmosphere. Physica Scripta, 1985, 31, 616-620.	1.2	9
82	Instantaneous Observations of Plume Dispersion in the Surface Layer. , 1985, , 549-569.		3
83	Description of the RisÃ, Puff Diffusion Model. Nuclear Technology, 1984, 67, 56-65.	0.7	90
84	Drift wave turbulence in Iow-Â plasmas. Plasma Physics, 1983, 25, 1173-1197.	0.9	37
85	On the finite line source problem in diffusion theory. Atmospheric Environment, 1982, 16, 2591-2594.	1.1	5
86	Comments "On Lateral Dispersion Coefficients as Function of Averaging Time― Journal of Applied Meteorology, 1981, 20, 731-732.	1.1	3
87	Comments on "Generalization ofK-Theory for Turbulent Diffusion.―Part II Journal of Applied Meteorology, 1980, 19, 117-118.	1.1	3
88	Note on Spectral Diffusivity Theory. Journal of Applied Meteorology, 1980, 19, 609-615.	1.1	5
89	Strong turbulence in partially ionized plasmas. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 77, 159-162.	0.9	28
90	STRONG TURBULENCE IN PARTIALLY IONIZED PLASMAS. Journal De Physique Colloque, 1979, 40, C7-569-C7-570.	0.2	2

#	Article	IF	CITATIONS
91	Investigation of Strong Turbulence in a Low-βPlasma. Physical Review Letters, 1978, 41, 951-954.	2.9	14