Robert C Malenka

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4994729/robert-c-malenka-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188 49,682 158 99 h-index g-index citations papers 56,469 188 7.88 22.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
158	5-HT modulation of a medial septal circuit tunes social memory stability. <i>Nature</i> , 2021 , 599, 96-101	50.4	4
157	Accumbens coordinated reset stimulation in mice exhibits ameliorating aftereffects on binge alcohol drinking. <i>Brain Stimulation</i> , 2021 , 14, 330-334	5.1	2
156	Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nature Communications, 2021, 12, 2135	17.4	6
155	Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
154	Dissecting neural mechanisms of prosocial behaviors. Current Opinion in Neurobiology, 2021, 68, 9-14	7.6	8
153	Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. <i>Science</i> , 2021 , 371, 153-159	33.3	31
152	Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. <i>Neuropsychopharmacology</i> , 2021 , 46, 2000-2010	8.7	6
151	A Molecular Calcium Integrator Reveals a Striatal Cell Type Driving Aversion. <i>Cell</i> , 2020 , 183, 2003-2019	. § 662	7
150	Long-term potentiation is independent of the C-tail of the GluA1 AMPA receptor subunit. <i>ELife</i> , 2020 , 9,	8.9	12
149	Continuous and Discrete Neuron Types of the Adult Murine Striatum. <i>Neuron</i> , 2020 , 105, 688-699.e8	13.9	42
148	Brain-Responsive Neurostimulation for Loss of Control Eating: Early Feasibility Study. <i>Neurosurgery</i> , 2020 , 87, 1277-1288	3.2	7
147	Deep posteromedial cortical rhythm in dissociation. <i>Nature</i> , 2020 , 586, 87-94	50.4	50
146	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10055-10066	11.5	14
145	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. <i>Neuron</i> , 2020 , 106, 1026-1	1 043 je!	925
144	Disruptive Psychopharmacology. <i>JAMA Psychiatry</i> , 2019 , 76, 775-776	14.5	12
143	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. <i>Neuron</i> , 2019 , 103, 217-23	34369	147
142	Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. <i>Neuron</i> , 2019 , 102, 621-635.e3	13.9	39

(2016-2019)

141	Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. <i>Neuron</i> , 2019 , 104, 916-930.e5	13.9	18
140	Electrical and synaptic integration of glioma into neural circuits. <i>Nature</i> , 2019 , 573, 539-545	50.4	303
139	Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	32
138	Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. <i>Cell Reports</i> , 2019 , 26, 159-167.e6	10.6	38
137	Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 192-197	11.5	51
136	Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. <i>Nature Neuroscience</i> , 2018 , 21, 1084-1095	25.5	104
135	Cocaine-Induced Structural Plasticity in Input Regions to Distinct Cell Types in Nucleus Accumbens. <i>Biological Psychiatry</i> , 2018 , 84, 893-904	7.9	24
134	5-HT release in nucleus accumbens rescues social deficits in mouse autism model. <i>Nature</i> , 2018 , 560, 589-594	50.4	92
133	Nucleus Accumbens Modulation in Reward and Aversion. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2018 , 83, 119-129	3.9	32
132	Deletion of in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E5382-E5389	11.5	30
131	Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. <i>Nature Neuroscience</i> , 2017 , 20, 219-229	25.5	42
130	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. <i>Neuron</i> , 2017 , 93, 822-839.e6	13.9	152
129	The Retromer Supports AMPA Receptor Trafficking During LTP. <i>Neuron</i> , 2017 , 94, 74-82.e5	13.9	49
128	Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. <i>Nature</i> , 2017 , 544, 316-32	150.4	106
127	Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. <i>Journal of Cell Biology</i> , 2017 , 216, 3831-3846	7.3	52
126	Gating of social reward by oxytocin in the ventral tegmental area. <i>Science</i> , 2017 , 357, 1406-1411	33.3	238
125	Rabies screen reveals GPe control of cocaine-triggered plasticity. <i>Nature</i> , 2017 , 549, 345-350	50.4	39
124	Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. <i>Cell Reports</i> , 2016 , 16, 1126-1137	10.6	227

123	Optogenetic Approaches to Neural Circuit Analysis in the Mammalian Brain 2016, 221-231		2
122	Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 822-9	11.5	136
121	From Synapses to Behavior: What Rodent Models Can Tell Us About Neuropsychiatric Disease. <i>Biological Psychiatry</i> , 2016 , 79, 4-6	7.9	4
120	MDMA as a Probe and Treatment for Social Behaviors. <i>Cell</i> , 2016 , 166, 269-272	56.2	24
119	Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. <i>Neuron</i> , 2015 , 85, 429-38	13.9	220
118	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. <i>Cell</i> , 2015 , 162, 635-47	56.2	379
117	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. <i>Cell</i> , 2015 , 162, 622-34	56.2	481
116	ENeurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. <i>Cell</i> , 2015 , 162, 593-606	56.2	88
115	Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. <i>Nature</i> , 2015 , 524, 88-92	50.4	397
114	Single-Cell mRNA Profiling Reveals Cell-Type-Specific Expression of Neurexin Isoforms. <i>Neuron</i> , 2015 , 87, 326-40	13.9	101
113	Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. <i>Cell</i> , 2015 , 161, 803-16	56.2	314
112	Synaptic Function of Rab11Fip5: Selective Requirement for Hippocampal Long-Term Depression. Journal of Neuroscience, 2015 , 35, 7460-74	6.6	18
111	Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. <i>Neuron</i> , 2015 , 86, 442-56	13.9	52
110	Input- and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits. <i>Neuron</i> , 2015 , 88, 345-56	13.9	68
109	Optogenetics: 10 years after ChR2 in neuronsviews from the community. <i>Nature Neuroscience</i> , 2015 , 18, 1202-12	25.5	98
108	Illuminating circuitry relevant to psychiatric disorders with optogenetics. <i>Current Opinion in Neurobiology</i> , 2015 , 30, 9-16	7.6	67
107	???????????. Nature Digest, 2015 , 12, 28-30	0	
106	Optogenetics and the circuit dynamics of psychiatric disease. <i>JAMA - Journal of the American Medical Association</i> , 2015 , 313, 2019-20	27.4	32

(2013-2015)

105	Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. <i>Nature Neuroscience</i> , 2015 , 18, 962-4	25.5	73
104	B-lymphocyte-mediated delayed cognitive impairment following stroke. <i>Journal of Neuroscience</i> , 2015 , 35, 2133-45	6.6	188
103	Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles. <i>PLoS Biology</i> , 2015 , 13, e1002267	9.7	55
102	Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. <i>Brain</i> , 2014 , 137, 2287-302	11.2	87
101	Depression: the best way forward. <i>Nature</i> , 2014 , 515, 200-1	50.4	79
100	Natural neural projection dynamics underlying social behavior. <i>Cell</i> , 2014 , 157, 1535-51	56.2	732
99	Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. <i>Cell</i> , 2014 , 158, 198-212	56.2	279
98	Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. <i>Science</i> , 2014 , 345, 535-42	33.3	181
97	The emerging role of nucleus accumbens oxytocin in social cognition. <i>Biological Psychiatry</i> , 2014 , 76, 354-5	7.9	19
96	Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. <i>Cell Reports</i> , 2014 , 7, 1077-1092	10.6	137
95	Reward and aversion in a heterogeneous midbrain dopamine system. <i>Neuropharmacology</i> , 2014 , 76 Pt B, 351-9	5.5	445
94	Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. <i>Neuron</i> , 2013 , 79, 439-46	13.9	52
93	Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. <i>Nature</i> , 2013 , 501, 179-84	50.4	668
92	Rapid release revealed: honoring the synapse. <i>Cell</i> , 2013 , 154, 1171-4	56.2	1
91	LTP requires a unique postsynaptic SNARE fusion machinery. <i>Neuron</i> , 2013 , 77, 542-58	13.9	144
90	Diverging neural pathways assemble a behavioural state from separable features in anxiety. <i>Nature</i> , 2013 , 496, 219-23	50.4	410
89	Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. <i>Neuron</i> , 2013 , 78, 498-509	13.9	195
88	Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. <i>Cell</i> , 2013 , 154, 75-88	56.2	197

87	BosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1923-8	11.5	144
86	Input-specific control of reward and aversion in the ventral tegmental area. <i>Nature</i> , 2012 , 491, 212-7	50.4	865
85	NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). <i>Cold Spring Harbor Perspectives in Biology</i> , 2012 , 4,	10.2	531
84	Postsynaptic complexin controls AMPA receptor exocytosis during LTP. <i>Neuron</i> , 2012 , 73, 260-7	13.9	98
83	Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. <i>Nature</i> , 2012 , 487, 183	- 9 0.4	251
82	A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice. <i>Journal of Neuroscience</i> , 2012 , 32, 9119-23	6.6	42
81	Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. <i>Neuron</i> , 2011 , 69, 650-63	13.9	715
80	Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. <i>Neuron</i> , 2011 , 70, 855-62	13.9	505
79	Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. <i>Journal of Cell Biology</i> , 2011 , 194, 323-34	7.3	78
78	The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 16502-9	11.5	110
77	Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 137	764-5	241
76	A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression. <i>Nature Neuroscience</i> , 2010 , 13, 1053-5	25.5	81
75	Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. <i>Nature Neuroscience</i> , 2010 , 13, 1519-25	25.5	271
74	Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. <i>Journal of Neuroscience</i> , 2010 , 30, 16437-52	6.6	94
73	The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. <i>Trends in Neurosciences</i> , 2010 , 33, 267-76	13.3	473
72	A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. <i>Nature Neuroscience</i> , 2009 , 12, 172-81	25.5	136
71	LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. <i>Neuron</i> , 2009 , 64, 791-8	13.9	275
7º	Synaptic plasticity: multiple forms, functions, and mechanisms. <i>Neuropsychopharmacology</i> , 2008 , 33, 18-41	8.7	968

(2004-2008)

69	Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD. <i>Neuron</i> , 2008 , 57, 248-62	13.9	143
68	Striatal plasticity and basal ganglia circuit function. <i>Neuron</i> , 2008 , 60, 543-54	13.9	688
67	Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. <i>Journal of Neuroscience</i> , 2008 , 28, 9092-100	6.6	401
66	Spike timing-dependent long-term potentiation in ventral tegmental area dopamine cells requires PKC. <i>Journal of Neurophysiology</i> , 2008 , 100, 533-8	3.2	39
65	Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus. <i>Journal of Neurophysiology</i> , 2008 , 99, 254-63	3.2	8
64	Synaptic plasticity and addiction. <i>Nature Reviews Neuroscience</i> , 2007 , 8, 844-58	13.5	1179
63	Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. <i>Neuropharmacology</i> , 2007 , 52, 71-6	5.5	184
62	Substrate localization creates specificity in calcium/calmodulin-dependent protein kinase II signaling at synapses. <i>Journal of Biological Chemistry</i> , 2006 , 281, 13794-13804	5.4	34
61	Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. <i>Neuron</i> , 2006 , 51, 99-111	13.9	186
60	CREB modulates excitability of nucleus accumbens neurons. <i>Nature Neuroscience</i> , 2006 , 9, 475-7	25.5	265
59	Synaptic scaling mediated by glial TNF-alpha. <i>Nature</i> , 2006 , 440, 1054-9	50.4	1251
58	Neural mechanisms of addiction: the role of reward-related learning and memory. <i>Annual Review of Neuroscience</i> , 2006 , 29, 565-98	17	2134
57	Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. <i>Nature Neuroscience</i> , 2005 , 8, 1043-50	25.5	154
56	The role of synaptic plasticity in addiction. <i>Clinical Neuroscience Research</i> , 2005 , 5, 141-146		O
55	Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. <i>Journal of Neuroscience</i> , 2005 , 25, 3219-28	6.6	686
54	Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. <i>Journal of Neuroscience</i> , 2004 , 24, 7482	2-96	457
53	Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. <i>Nature Neuroscience</i> , 2004 , 7, 244-53	25.5	432
52	LTP and LTD: an embarrassment of riches. <i>Neuron</i> , 2004 , 44, 5-21	13.9	2 910

51	Synaptic plasticity in the mesolimbic dopamine system. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2003 , 358, 815-9	5.8	99
50	Synaptic plasticity and AMPA receptor trafficking. <i>Annals of the New York Academy of Sciences</i> , 2003 , 1003, 1-11	6.5	272
49	The long-term potential of LTP. <i>Nature Reviews Neuroscience</i> , 2003 , 4, 923-6	13.5	169
48	A developmental switch in the signaling cascades for LTP induction. <i>Nature Neuroscience</i> , 2003 , 6, 15-6	25.5	260
47	Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. <i>Neuron</i> , 2003 , 37, 577-82	13.9	1175
46	RIM1alpha is required for presynaptic long-term potentiation. <i>Nature</i> , 2002 , 415, 327-30	50.4	331
45	AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 2002, 25, 103-26	17	2062
44	NIH workshop report: taming the brain's complexity. <i>Neuron</i> , 2002 , 36, 29-30	13.9	8
43	NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. <i>Nature Neuroscience</i> , 2001 , 4, 235-6	25.5	157
42	Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. <i>Nature Neuroscience</i> , 2001 , 4, 1217-23	25.5	554
41	Role of AMPA receptor endocytosis in synaptic plasticity. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 315-24	13.5	358
40	Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. <i>Nature</i> , 2001 , 411, 583-7	50.4	1128
39	Addiction and the brain: the neurobiology of compulsion and its persistence. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 695-703	13.5	1024
38	Regulation of synaptic strength by protein phosphatase 1. <i>Neuron</i> , 2001 , 32, 1133-48	13.9	193
37	Delivering the goods to synapses. <i>Nature Neuroscience</i> , 2000 , 3, 1064-6	25.5	5
36	Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. <i>Nature Neuroscience</i> , 2000 , 3, 1291-300	25.5	605
35	Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. <i>Annual Review of Neuroscience</i> , 2000 , 23, 185-215	17	759
34	Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. <i>Journal of Neuroscience</i> , 1999 , 19, 5834-46	6.6	149

33	An immunocytochemical assay for activity-dependent redistribution of glutamate receptors from the postsynaptic plasma membrane. <i>Annals of the New York Academy of Sciences</i> , 1999 , 868, 550-3	6.5	6
32	Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. <i>Nature Neuroscience</i> , 1999 , 2, 454-60	25.5	384
31	Role of AMPA receptor cycling in synaptic transmission and plasticity. <i>Neuron</i> , 1999 , 24, 649-58	13.9	600
30	Postsynaptic membrane fusion and long-term potentiation. <i>Science</i> , 1998 , 279, 399-403	33.3	369
29	Development of excitatory circuitry in the hippocampus. <i>Journal of Neurophysiology</i> , 1998 , 79, 2013-24	3.2	214
28	Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. <i>Journal of Neurophysiology</i> , 1998 , 79, 1768-76	3.2	136
27	Learning mechanisms: the case for CaM-KII. <i>Science</i> , 1997 , 276, 2001-2	33.3	119
26	Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. <i>Neuron</i> , 1997 , 18, 969-82	13.9	465
25	Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. <i>Journal of Neuroscience</i> , 1997 , 17, 5697-710	6.6	163
24	Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. <i>Nature</i> , 1997 , 385, 630-4	50.4	410
23	Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. <i>Nature</i> , 1997 , 388, 182-6	50.4	436
22	Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. <i>Nature</i> , 1997 , 388, 590-3	50.4	314
21	Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. <i>Neuron</i> , 1996 , 16, 797-803	13.9	350
20	Ca2+ signaling requirements for long-term depression in the hippocampus. <i>Neuron</i> , 1996 , 16, 825-33	13.9	371
19	Long-term potentiation in cultures of single hippocampal granule cells: a presynaptic form of plasticity. <i>Neuron</i> , 1996 , 16, 1147-57	13.9	125
18	Role of intercellular interactions in heterosynaptic long-term depression. <i>Nature</i> , 1996 , 380, 446-50	50.4	94
17	A critical period for long-term potentiation at thalamocortical synapses. <i>Nature</i> , 1995 , 375, 325-8	50.4	589
16	Essential functions of synapsins I and II in synaptic vesicle regulation. <i>Nature</i> , 1995 , 375, 488-93	50.4	635

15	Contrasting properties of two forms of long-term potentiation in the hippocampus. <i>Nature</i> , 1995 , 377, 115-8	50.4	760
14	Independent mechanisms for long-term depression of AMPA and NMDA responses. <i>Neuron</i> , 1995 , 15, 417-26	13.9	120
13	Evidence for silent synapses: implications for the expression of LTP. <i>Neuron</i> , 1995 , 15, 427-34	13.9	1056
12	Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. <i>Nature</i> , 1994 , 368, 242-6	50.4	183
11	Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. <i>Nature</i> , 1994 , 369, 486-8	50.4	930
10	Synaptic plasticity in the hippocampus: LTP and LTD. <i>Cell</i> , 1994 , 78, 535-8	56.2	526
9	Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 1994 , 4, 389-99	7.6	1048
8	NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. <i>Trends in Neurosciences</i> , 1993 , 16, 521-7	13.3	721
7	Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. <i>Neuron</i> , 1992 , 9, 121-8	13.9	207
6	Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. <i>Neuron</i> , 1992 , 9, 967-75	13.9	911
5	Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. <i>Neuron</i> , 1991 , 6, 53-60	13.9	264
4	An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. <i>Nature</i> , 1989 , 340, 554-7	50.4	1014
3	NMDA application potentiates synaptic transmission in the hippocampus. <i>Nature</i> , 1988 , 334, 250-2	50.4	428
2	Potentiation of synaptic transmission in the hippocampus by phorbol esters. <i>Nature</i> , 1986 , 321, 175-7	50.4	612
1	Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. <i>Nature</i> , 1986 , 321, 695-7	50.4	210