Sheldon Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994228/publications.pdf

Version: 2024-02-01

126858 175177 12,557 64 33 52 citations h-index g-index papers 65 65 65 11995 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Leptin and renal disease. American Journal of Kidney Diseases, 2002, 39, 1-11.	2.1	6,157
2	Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8015-8020.	3.3	859
3	A Glimpse of Various Pathogenetic Mechanisms of Diabetic Nephropathy. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 395-423.	9.6	575
4	From the Periphery of the Glomerular Capillary Wall Toward the Center of Disease: Podocyte Injury Comes of Age in Diabetic Nephropathy. Diabetes, 2005, 54, 1626-1634.	0.3	521
5	Diabetic Nephropathy: Mechanisms of Renal Disease Progression. Experimental Biology and Medicine, 2008, 233, 4-11.	1.1	502
6	ACE and ACE2 Activity in Diabetic Mice. Diabetes, 2006, 55, 2132-2139.	0.3	270
7	Diabetic nephropathy and transforming growth factor-î²: transforming our view of glomerulosclerosis and fibrosis build-up. Seminars in Nephrology, 2003, 23, 532-543.	0.6	233
8	Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience., 2019, 7, 2.		213
9	Hydrogen peroxide increases extracellular matrix mRNA through TGF-β in human mesangial cells. Kidney International, 2001, 59, 87-95.	2.6	196
10	Increased Glomerular and Tubular Expression of Transforming Growth Factor- \hat{l}^21 , Its Type II Receptor, and Activation of the Smad Signaling Pathway in the db/db Mouse. American Journal of Pathology, 2001, 158, 1653-1663.	1.9	187
11	Effects of high glucose and TGF- \hat{l}^21 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney International, 2002, 62, 901-913.	2.6	182
12	Blockade of Vascular Endothelial Growth Factor Signaling Ameliorates Diabetic Albuminuria in Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 3093-3104.	3.0	179
13	Retooling the Creatinine Clearance Equation to Estimate Kinetic GFR when the Plasma Creatinine Is Changing Acutely. Journal of the American Society of Nephrology: JASN, 2013, 24, 877-888.	3.0	169
14	Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF \hat{l}^2 -induced fibronectin in mesangial cells. Biochemical and Biophysical Research Communications, 2002, 296, 1356-1365.	1.0	161
15	Leptin stimulates type I collagen production in db/db mesangial cells: Glucose uptake and TGF- \hat{l}^2 type II receptor expression. Kidney International, 2001, 59, 1315-1323.	2.6	126
16	The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF- \hat{l}^2 , increases podocyte motility and albumin permeability. American Journal of Physiology - Renal Physiology, 2009, 297, F85-F94.	1.3	121
17	Reversibility of established diabetic glomerulopathy by anti-TGF- \hat{l}^2 antibodies in db/db mice. Biochemical and Biophysical Research Communications, 2003, 300, 16-22.	1.0	120
18	The Urine/Plasma Electrolyte Ratio: A Predictive Guide to Water Restriction. American Journal of the Medical Sciences, 2000, 319, 240-244.	0.4	120

#	Article	IF	Citations
19	Extracellular Signal-Regulated Kinase Mediates Stimulation of TGF \hat{I}^21 and Matrix by High Glucose in Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2000, 11, 2222-2230.	3.0	115
20	Interference with TGF- \hat{l}^2 signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. American Journal of Physiology - Renal Physiology, 2007, 293, F1657-F1665.	1.3	110
21	Podocyte-Derived Vascular Endothelial Growth Factor Mediates the Stimulation of Â3(IV) Collagen Production by Transforming Growth Factor-Â1 in Mouse Podocytes. Diabetes, 2004, 53, 2939-2949.	0.3	101
22	Glycated albumin stimulates TGF- \hat{l}^2 bgr; 1 production and protein kinase C activity in glomerular endothelial cells 1. Kidney International, 2001, 59, 673-681.	2.6	99
23	Glycated albumin increases oxidative stress, activates NF-κB and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-κ1 production in macrophage RAW cells. Translational Research, 2003, 141, 242-249.	2.4	99
24	Angiotensin II stimulates $\hat{l}\pm 3$ (IV) collagen production in mouse podocytes via TGF- \hat{l}^2 and VEGF signalling: implications for diabetic glomerulopathy. Nephrology Dialysis Transplantation, 2005, 20, 1320-1328.	0.4	98
25	The Urine/Plasma Electrolyte Ratio: A Predictive Guide to Water Restriction. American Journal of the Medical Sciences, 2000, 319, 240-244.	0.4	95
26	Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrology Dialysis Transplantation, 2013, 28, 1700-1710.	0.4	90
27	THE KEY ROLE OF THE TRANSFORMING GROWTH FACTOR-Î ² SYSTEM IN THE PATHOGENESIS OF DIABETIC NEPHROPATHY. Renal Failure, 2001, 23, 471-481.	0.8	88
28	Abnormalities in signaling pathways in diabetic nephropathy. Expert Review of Endocrinology and Metabolism, 2010, 5, 51-64.	1.2	88
29	Amadori-glycated albumin in diabetic nephropathy: Pathophysiologic connections. Kidney International, 2000, 58, S40-S44.	2.6	72
30	Amadori-modified glycated serum proteins and accelerated atherosclerosis in diabetes: Pathogenic and therapeutic implications. Translational Research, 2006, 147, 211-219.	2.4	68
31	Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes. PLoS ONE, 2015, 10, e0142291.	1.1	65
32	Evidence linking glycated albumin to altered glomerular nephrin and VEGF expression, proteinuria, and diabetic nephropathy. Kidney International, 2005, 68, 1554-1561.	2.6	56
33	Retinoids as a potential treatment for experimental puromycin-induced nephrosis. British Journal of Pharmacology, 2003, 139, 823-831.	2.7	54
34	Vascular endothelial growth factor and diabetic nephropathy. Current Diabetes Reports, 2008, 8, 470-476.	1.7	52
35	Effects of Tumor Necrosis Factor- $\hat{l}\pm$ on Podocyte Expression of Monocyte Chemoattractant Protein-1 and in Diabetic Nephropathy. Nephron Extra, 2015, 5, 1-18.	1.1	36
36	HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced "inside-out―signaling to extracellular matrix by preventing RhoA activation. American Journal of Physiology - Renal Physiology, 2006, 291, F995-F1004.	1.3	32

#	Article	IF	Citations
37	Cultured tubule cells from TGF- \hat{l}^21 null mice exhibit impaired hypertrophy and fibronectin expression in high glucose. Kidney International, 2004, 65, 1191-1204.	2.6	29
38	Evaluation and management of hyponatremia: an emerging role for vasopressin receptor antagonists. Nature Clinical Practice Nephrology, 2007, 3, 82-95.	2.0	29
39	Inhibiting albumin glycation in vivo ameliorates glomerular overexpression of TGF- \hat{l}^21 . Kidney International, 2002, 61, 2025-2032.	2.6	26
40	Inhibiting albumin glycation attenuates dysregulation of VEGFR-1 and collagen IV subchain production and the development of renal insufficiency. American Journal of Physiology - Renal Physiology, 2007, 292, F789-F795.	1.3	25
41	Kinetic Glomerular Filtration Rate in Routine Clinical Practice—Applications and Possibilities. Advances in Chronic Kidney Disease, 2018, 25, 105-114.	0.6	20
42	The value of kinetic glomerular filtration rate estimation on medication dosing in acute kidney injury. PLoS ONE, 2019, 14, e0225601.	1.1	18
43	Visualizing the mouse podocyte with multiphoton microscopy. Biochemical and Biophysical Research Communications, 2012, 427, 525-530.	1.0	15
44	Kinetic glomerular filtration rate equation can accommodate a changing body volume: Derivation and usage of the formula. Mathematical Biosciences, 2018, 306, 97-106.	0.9	13
45	The Renin-Angiotensin System in Diabetic Nephropathy. , 2001, 135, 212-221.		11
46	Kinetic Sodium Equation with Built-In Rate of Correction: Aid to Prescribing Therapy for Hyponatremia or Hypernatremia. Journal of Onco-Nephrology, 2017, 1, 204-212.	0.3	10
47	Estimating Creatinine Clearance in the Nonsteady State: The Determination and Role of the True Average Creatinine Concentration. Kidney Medicine, 2019, 1, 207-216.	1.0	7
48	Pathophysiology of Diabetic Nephropathy. , 2020, , 279-296.		7
49	Improving on the Adrogué–Madias Formula. Kidney360, 2021, 2, 365-370.	0.9	7
50	In creatinine kinetics, the glomerular filtration rate always moves the serum creatinine in the opposite direction. Physiological Reports, 2021, 9, e14957.	0.7	5
51	Pathophysiology and Pathogenesis of Diabetic Nephropathy. , 2013, , 2605-2632.		4
52	Response to "Kinetic sodium equation― Journal of Onco-Nephrology, 2018, 2, 33-34.	0.3	4
53	Hyponatremia in cancer patients: Strategy for safe correction in the hospital. Journal of Onco-Nephrology, 2019, 3, 144-150.	0.3	3
54	Transforming Growth Factor- \hat{I}^2 and other Cytokines in Experimental and Human Nephropathy. , 2000, , 313-338.		3

#	Article	IF	CITATIONS
55	Hemoconcentration of Creatinine Minimally Contributes to Changes in Creatinine during the Treatment of Decompensated Heart Failure. Kidney360, 2022, 3, 1003-1010.	0.9	3
56	Involvement of the transforming growth factor- \hat{l}^2 system in the pathogenesis of diabetic nephropathy. Clinical and Experimental Nephrology, 2002, 6, 125-129.	0.7	2
57	Transforming Growth Factor- \hat{I}^2 Signal Transduction in the Pathogenesis of Diabetic Nephropathy. , 2006, , 201-221.		1
58	Physiologic Principles in the Clinical Evaluation of Electrolyte, Water, and Acid–Base Disorders. , 2013, , 2477-2511.		1
59	Pathophysiology of Diabetic Nephropathy. , 2015, , 151-162.		1
60	Perspectives From an Onconephrology Interest Group: Conference Report. Canadian Journal of Kidney Health and Disease, 2020, 7, 205435812096258.	0.6	1
61	TRANSFORMING GROWTH FACTOR- \hat{l}^2 AND OTHER CYTOKINES IN EXPERIMENTAL AND HUMAN DIABETIC NEPHROPATHY. , 0, , 397-432.		1
62	Evolution of the kidney–cancer connection. Journal of Onco-Nephrology, 2019, 3, 88-91.	0.3	0
63	Acute kidney injury incidence, pathogenesis, and outcomes. , 2020, , 269-274.e3.		0
64	[Creatinine] can change in an unexpected direction due to the volume change rate that interacts with kinetic GFR: Potentially positive paradox. Physiological Reports, 2022, 10, e15172.	0.7	0