
Mohammed S Alam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmospheric Environment, 2013, 79, 271-285.	1.9	135
2	Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis. Atmospheric Chemistry and Physics, 2010, 10, 2893-2917.	1.9	122
3	Analysis of atmospheric concentrations of quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmospheric Environment, 2013, 77, 974-982.	1.9	121
4	Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Physical Chemistry Chemical Physics, 2015, 17, 4076-4088.	1.3	117
5	Total radical yields from tropospheric ethene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 11002.	1.3	90
6	Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmospheric Environment, 2013, 77, 24-35.	1.9	75
7	Using Variable Ionization Energy Time-of-Flight Mass Spectrometry with Comprehensive GC×GC To Identify Isomeric Species. Analytical Chemistry, 2016, 88, 4211-4220.	3.2	74
8	Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmospheric Measurement Techniques, 2020, 13, 1181-1193.	1.2	56
9	Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories. Atmospheric Chemistry and Physics, 2014, 14, 2467-2477.	1.9	53
10	The characterisation of diesel exhaust particles – composition, size distribution and partitioning. Faraday Discussions, 2016, 189, 69-84.	1.6	50
11	Polycyclic aromatic hydrocarbons, brachial artery distensibility and blood pressure among children residing near an oil refinery. Environmental Research, 2015, 136, 133-140.	3.7	46
12	Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources. Atmospheric Environment, 2015, 122, 427-438.	1.9	45
13	Mapping and quantifying isomer sets of hydrocarbons ( ≥  C _{12diesel exhaust, lubricating oil and diesel fuel samples using GC  ×  GC-ToF-MS. Atmospheric M Techniques, 2018, 11, 3047-3058.}	lb> le as ureme	;;) in en ‡ 4
14	Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC × GC-TOFMS. Fuel, 2018, 220, 792-799.	3.4	43
15	Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation. Environmental Science & Technology, 2015, 49, 13168-13178.	4.6	42
16	Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions. Journal of Physical Chemistry A, 2013, 117, 12468-12483.	1.1	39
17	Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure. Environmental Research, 2015, 140, 495-501.	3.7	34
18	Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia. Science of the Total Environment, 2015, 506-507, 401-408.	3.9	32

Mohammed S Alam

#	Article	IF	CITATIONS
19	Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis. Chemical Science, 2016, 7, 3968-3977.	3.7	32
20	Interpretation of particle number size distributions measured across an urban area during the FASTER campaign. Atmospheric Chemistry and Physics, 2019, 19, 39-55.	1.9	32
21	Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Science of the Total Environment, 2016, 572, 1175-1183.	3.9	30
22	A comparison of PM _{2.5} -bound polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi (India). Atmospheric Chemistry and Physics, 2020, 20, 14303-14319.	1.9	30
23	Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter. Atmospheric Environment, 2013, 65, 101-111.	1.9	28
24	Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China. Atmospheric Environment, 2019, 202, 244-255.	1.9	28
25	Characterization of Gas and Particulate Phase Organic Emissions (C ₉ –C ₃₇) from a Diesel Engine and the Effect of Abatement Devices. Environmental Science & Technology, 2019, 53, 11345-11352.	4.6	25
26	Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 2021, 274, 129913.	4.2	25
27	Diesel exhaust nanoparticles and their behaviour in the atmosphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180492.	1.0	24
28	Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. Atmospheric Chemistry and Physics, 2018, 18, 11073-11096.	1.9	21
29	Behaviour of traffic emitted semi-volatile and intermediate volatility organic compounds within the urban atmosphere. Science of the Total Environment, 2020, 720, 137470.	3.9	20
30	Influence of petrochemical installations upon PAH concentrations at sites in Western Saudi Arabia. Atmospheric Pollution Research, 2016, 7, 954-960.	1.8	19
31	Modelling component evaporation and composition change of traffic-induced ultrafine particles during travel from street canyon to urban background. Faraday Discussions, 2016, 189, 529-546.	1.6	17
32	Size-resolved physico-chemical characterization of diesel exhaust particles and efficiency of exhaust aftertreatment. Atmospheric Environment, 2020, 222, 117021.	1.9	16
33	Composition and emission factors of traffic- emitted intermediate volatility and semi-volatile hydrocarbons (C10–C36) at a street canyon and urban background sites in central London, UK. Atmospheric Environment, 2020, 231, 117448.	1.9	16
34	Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole). Atmospheric Chemistry and Physics, 2014, 14, 5349-5368.	1.9	13
35	Insight into the composition of organic compounds ( ≥  C _{6PM_{2.5} in wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10865-10881.}	imp;gt;) in 1.9	12
36	Experimental vapour pressures of eight n-alkanes (C17, C18, C20, C22, C24, C26, C28 and C31) measured at ambient temperatures. Atmospheric Environment, 2019, 213, 739-745.	1.9	11

Mohammed S Alam

#	Article	IF	CITATIONS
37	Interference from alkenes in chemiluminescent NO _{<i>x</i>} measurements. Atmospheric Measurement Techniques, 2020, 13, 5977-5991.	1.2	10
38	Traffic-induced multicomponent ultrafine particle microphysics in the WRF v3.6.1 large eddy simulation model: General behaviour from idealised scenarios at the neighbourhood-scale. Atmospheric Environment, 2020, 223, 117213.	1.9	9
39	Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi. Atmospheric Chemistry and Physics, 2022, 22, 5415-5433.	1.9	7
40	Aliphatic carbonyl compounds (C ₈ –C ₂₆) in wintertime atmospheric aerosol in London, UK. Atmospheric Chemistry and Physics, 2019, 19, 2233-2246.	1.9	6
41	Neighbourhood-scale dispersion of traffic-induced ultrafine particles in central London: WRF large eddy simulations. Environmental Pollution, 2020, 266, 115223.	3.7	6
42	The influence of particle composition upon the evolution of urban ultrafine diesel particles on the neighbourhood scale. Atmospheric Chemistry and Physics, 2018, 18, 17143-17155.	1.9	5
43	An instrument for in situ measurement of total ozone reactivity. Atmospheric Measurement Techniques, 2020, 13, 1655-1670.	1.2	4
44	Mechanisms of reactivity of benzo(a)pyrene and other PAH inferred from field measurements. Atmospheric Pollution Research, 2018, 9, 1214-1220.	1.8	3
45	Highlights from Faraday Discussion: Chemistry in the urban atmosphere, United Kingdom, April 2016. Chemical Communications, 2016, 52, 9162-9172.	2.2	2
46	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	1.6	1
47	General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols. Faraday Discussions, 2021, 226, 479-501.	1.6	1
48	Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.	1.6	0
49	Production of the Atmospheric Oxidant Radicals OH and HO2 from the Ozonolysis of Alkenes. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 151-162.	0.1	0