Liyou Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4994055/publications.pdf

Version: 2024-02-01

1937685 1872680 23 53 4 6 citations h-index g-index papers 23 23 23 36 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Assembly Quality Inspection of Combine Harvester Based on Whale Algorithm Optimization LSSVM. Shock and Vibration, 2022, 2022, 1-12.	0.6	O
2	FMI-based co-simulation method and test verification for tractor power-shift transmission. PLoS ONE, 2022, 17, e0263838.	2.5	4
3	Multi-Objective Optimization and Test of a Tractor Drive Motor. World Electric Vehicle Journal, 2022, 13, 43.	3.0	5
4	Parameter identification of the Bouc-Wen model for the magnetorheological damper using fireworks algorithm. Journal of Mechanical Science and Technology, 2022, 36, 2213-2224.	1.5	8
5	Parameter identification of Bouc-Wen model for MR damper by parameter sensitivity analysis and modified PSO algorithm. International Journal of Applied Electromagnetics and Mechanics, 2022, 69, 513-531.	0.6	3
6	Multiobjective Optimization Design for Lightweight and Crash Safety of Body-in-White Based on Entropy Weighted Grey Relational Analysis and MNSGA-II. IEEE Access, 2022, 10, 67413-67436.	4.2	5
7	Combine Assembly Quality Detection Based on Multi-Entropy Data Fusion and Optimized LSSVM. IEEE Access, 2021, 9, 63188-63198.	4.2	3
8	Design and Selection of Power Coupling Device of Electro-mechanical Continuously Variable Transmission for Tractor. , $2021, \ldots$		0
9	Inspection method of combine assembly quality based on optimized VMD. Journal of Physics: Conference Series, 2021, 2125, 012021.	0.4	O
10	Simulation of multi-power composite electric tractor based on power fluctuation ratio. Journal of Physics: Conference Series, 2021, 2125, 012007.	0.4	0
11	Design and Simulation of Dynamic Coupling System for Hybrid Electric Tractor. , 2021, , .		2
12	Development of Cooperative Controller for Dual-Motor Independent Drive Electric Tractor. Mathematical Problems in Engineering, 2020, 2020, 1-12.	1.1	2
13	Dynamic Loading System of an Agricultural Vehicle Power Wagon Based on Complex Loading. IEEE Access, 2020, 8, 196667-196674.	4.2	2
14	Shifting control strategy of a tractor AMT system. Australian Journal of Mechanical Engineering, 2018, 16, 9-15.	2.1	1
15	The Loading Control Strategy of the Mobile Dynamometer Vehicle Based on Neural Network PID. Mathematical Problems in Engineering, 2017, 2017, 1-7.	1.1	5
16	Design of a Load Torque Based Control Strategy for Improving Electric Tractor Motor Energy Conversion Efficiency. Mathematical Problems in Engineering, 2016, 2016, 1-14.	1.1	8
17	Modeling and simulation of hydro-mechanical continuously variable transmission system based on Simscape., 2015,,.		2
18	Surface Smoothness Analysis of Tractor Modeling Based on CATIA. , 2011, , .		0

#	Article	IF	CITATIONS
19	Reverse Design and Finite Element Analysis of Tractor Panel Based on CATIA. , 2011, , .		1
20	Surface Smoothness Analysis of Tractor Modeling Based on CATIA. , 2011, , .		0
21	Research of Speed Ratio Matching Strategies of Hydro-Mechanical Continuously Variable Transmission System for Tractor. , 2009, , .		1
22	Study on Hydro-Mechanical Differential Dynamic Turning Process of Tracked Vehicle., 2009,,.		1
23	Combine Assembly Fault Diagnosis Based on Optimized Multi-scale Reverse Discrete Entropy. Transactions of the Canadian Society for Mechanical Engineering, 0, , .	0.8	0