Daozhi Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4993742/publications.pdf

Version: 2024-02-01

566801 580395 25 26 903 15 h-index citations g-index papers 26 26 26 942 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Waterâ€Enabled Electricity Generation: A Perspective. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	17
2	High-Performance Mid-IR to Deep-UV van der Waals Photodetectors Capable of Local Spectroscopy at Room Temperature. Nano Letters, 2022, 22, 3425-3432.	4.5	6
3	A Simple High Power, Fast Response Streaming Potential/Current-Based Electric Nanogenerator Using a Layer of Al ₂ O ₃ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 27169-27178.	4.0	22
4	Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging. Applied Surface Science, 2021, 554, 149579.	3.1	15
5	Multifunctional Self-Powered Electronics Based on a Reusable Low-Cost Polypropylene Fabric Triboelectric Nanogenerator. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34266-34273.	4.0	18
6	Femtosecond Laser Irradiation-Mediated MoS ₂ –Metal Contact Engineering for High-Performance Field-Effect Transistors and Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 54246-54257.	4.0	15
7	Threshold Switching in Single Metalâ€Oxide Nanobelt Devices Emulating an Artificial Nociceptor. Advanced Electronic Materials, 2020, 6, 1900595.	2.6	35
8	A Self-Powered Nanogenerator for the Electrical Protection of Integrated Circuits from Trace Amounts of Liquid. Nano-Micro Letters, 2020, 12, 5.	14.4	20
9	Heterogeneous stimuli induced nonassociative learning behavior in ZnO nanowire memristor. Nanotechnology, 2020, 31, 125201.	1.3	14
10	Exhalingâ€Driven Hydroelectric Nanogenerators for Standâ€Alone Nonmechanical Breath Analyzing. Advanced Materials Technologies, 2020, 5, 1900819.	3.0	27
11	Laser-induced Joining of Nanoscale Materials: Processing, Properties, and Applications. Nano Today, 2020, 35, 100959.	6.2	25
12	Super black iron nanostructures with broadband ultralow reflectance for efficient photothermal conversion. Applied Surface Science, 2020, 521, 146388.	3.1	12
13	Moistureâ€Enabled Electricity Generation: From Physics and Materials to Selfâ€Powered Applications. Advanced Materials, 2020, 32, e2003722.	11.1	175
14	High-Performance Magnesiumâ€"Carbon Nanofiber Hygroelectric Generator Based on Interface-Mediation-Enhanced Capacitive Discharging Effect. ACS Applied Materials & Interfaces, 2020, 12, 24289-24297.	4.0	25
15	Self-powered, flexible and remote-controlled breath monitor based on TiO ₂ nanowire networks. Nanotechnology, 2019, 30, 325503.	1.3	24
16	Self-Powered, Rapid-Response, and Highly Flexible Humidity Sensors Based on Moisture-Dependent Voltage Generation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14249-14255.	4.0	74
17	Cooperative Bilayer of Lattice-Disordered Nanoparticles as Room-Temperature Sinterable Nanoarchitecture for Device Integrations. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16972-16980.	4.0	30
18	Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt. Nanoscale, 2018, 10, 6069-6079.	2.8	30

#	Article	IF	CITATIONS
19	Selfâ€Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Advanced Materials, 2018, 30, e1705925.	11.1	207
20	Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer. ACS Applied Materials & Direct Writing and Controllable Microdroplet Transfer. ACS Applied Materials & Direct Representation of the Scalar Represen	4.0	54
21	Wearable Electronics: Selfâ€Powered Wearable Electronics Based on Moisture Enabled Electricity Generation (Adv. Mater. 18/2018). Advanced Materials, 2018, 30, 1870128.	11.1	7
22	Investigation of impact and spreading of molten nanosized gold droplets on solid surfaces. Applied Optics, 2018, 57, 2080.	0.9	6
23	Cold welding of Ag nanowires by large plastic deformation. Scripta Materialia, 2016, 114, 112-116.	2.6	18
24	Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces. Soft Matter, 2016, 12, 295-301.	1.2	13
25	Cu-Cu bonding by Ag nanostructure at low temperature of 180 $\hat{A}^{\circ}\text{C.}$, 2015, , .		5
26	Annealing-induced highly-conductive and stable Cu–organic composite nanoparticles with hierarchical structures. Journal of Alloys and Compounds, 2015, 636, 1-7.	2.8	9