Yong-Goo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4993623/publications.pdf Version: 2024-02-01

		933447	642732
32	541	10	23
papers	citations	h-index	g-index
32	32	32	703
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Root Extract of a Micropropagated Prunus africana Medicinal Plant Induced Apoptosis in Human Prostate Cancer Cells (PC-3) via Caspase-3 Activation. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1.2	7
2	Highly Efficient Bioconversion of trans-Resveratrol to δ-Viniferin Using Conditioned Medium of Grapevine Callus Suspension Cultures. International Journal of Molecular Sciences, 2022, 23, 4403.	4.1	2
3	GC–MS and LC-TOF–MS profiles, toxicity, and macrophage-dependent in vitro anti-osteoporosis activity of Prunus africana (Hook f.) Kalkman Bark. Scientific Reports, 2022, 12, 7044.	3.3	2
4	Histological assessment of regenerating plants at callus, shoot organogenesis and plantlet stages during the in vitro micropropagation of Asparagus cochinchinensis. Plant Cell, Tissue and Organ Culture, 2021, 144, 421-433.	2.3	11
5	Effects of commercial soils on germination, early growth, and chlorophyll content of Aspilia africana, a medicinal plant. Journal of Plant Biotechnology, 2021, 48, 115-122.	0.4	2
6	An in vitro Propagation of Aspilia africana (Pers.) C. D. Adams, and Evaluation of Its Anatomy and Physiology of Acclimatized Plants. Frontiers in Plant Science, 2021, 12, 704896.	3.6	12
7	Antioxidant Activity, Polyphenolic Content, and FT-NIR Analysis of Different Aspilia africana Medicinal Plant Tissues. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	1.2	9
8	Mass production of Pinellia ternata multiple egg-shaped micro-tubers (MESMT) through optimized growth conditions for use in ethnomedicine. Plant Cell, Tissue and Organ Culture, 2020, 140, 173-184.	2.3	8
9	In Vitro Antiosteoporosis Activity and Hepatotoxicity Evaluation in Zebrafish Larvae of Bark Extracts of Prunus jamasakura Medicinal Plant. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	1.2	3
10	A Micropropagation Protocol for the Endangered Medicinal Tree Prunus africana (Hook f.) Kalkman: Genetic Fidelity and Physiological Parameter Assessment. Frontiers in Plant Science, 2020, 11, 548003.	3.6	28
11	Verification of the Field Productivity and Bioequivalence of a Medicinal Plant (Polygonum) Tj ETQq1 1 0.78431	4 rgBT/Ove	erlock 10 Tf 5
12	Effects of Processed <i>Polygonum multiflorum</i> with KIOM Patent on Bone Remodeling-Related Protein Expression in Human Osteoblast-Like SaOS-2 Cells. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-6.	1.2	4
13	Verification of the Field Productivity of Rehmannia glutinosa (Gaertn.) DC. Developed Through Optimized In Vitro Culture Method. Plants, 2020, 9, 317.	3.5	4
14	Anti-inflammatory and analgesic potential of Tamarindus indica Linn. (Fabaceae): a narrative review. Integrative Medicine Research, 2019, 8, 181-186.	1.8	40
15	In vitro propagation of Trichosanthes kirilowii Maxim. through nodal segment shoot proliferation. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 702-709.	2.1	4
16	Nitric oxide-induced proteomic analysis in rice leaves. Plant Biotechnology Reports, 2019, 13, 375-387.	1.5	5
17	Stress Inducible Overexpression of Arabidopsis Nucleotide Diphosphate Kinase 2 Gene Confers Enhanced Tolerance to Salt Stress in Tall Fescue Plants. Journal of the Korean Society of Grassland and Forage Science, 2017, 37, 223-230.	0.2	1
18	Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. Plant Physiology and Biochemistry, 2015, 89, 112-122.	5.8	41

Yong-Goo Kim

#	Article	IF	CITATIONS
19	Effect of Physical Pre-treatment of Mature Seed in Callus Formation and Plant Regeneration of Zoysiagrass. Journal of the Korean Society of Grassland and Forage Science, 2015, 35, 316-320.	0.2	0
20	Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil. Journal of the Korean Society of Grassland and Forage Science, 2014, 34, 262-268.	0.2	11
21	Mapping the leaf proteome of Miscanthus sinensis and its application to the identification of heat-responsive proteins. Planta, 2013, 238, 459-474.	3.2	24
22	<i>Agrobacterium</i> â€mediated transformation of reed (<i>Phragmites communis</i> Trinius) using mature seedâ€derived calli. GCB Bioenergy, 2013, 5, 73-80.	5.6	16
23	Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress. Journal of the Korean Society of Grassland and Forage Science, 2013, 33, 159-166.	0.2	4
24	Effect of Surface Sterilization Method on Agrobacterium-mediated Transformation of Field-grown Zoysiagrass Stolon. Journal of the Korean Society of Grassland and Forage Science, 2013, 33, 100-104.	0.2	0
25	Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Science, 2012, 187, 113-126.	3.6	107
26	Identification of MsHsp23 gene using annealing control primer system. Acta Physiologiae Plantarum, 2012, 34, 807-811.	2.1	5
27	Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnology Letters, 2012, 34, 167-174.	2.2	50
28	Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters, 2012, 34, 371-377.	2.2	85
29	Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue. Asian-Australasian Journal of Animal Sciences, 2012, 25, 818-823.	2.4	16
30	Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant and Soil, 2011, 346, 45-62.	3.7	35
31	Effect of Plant Growth Regulators on Callus Induction and Plant Regeneration from Seed Culture of Reed. Journal of the Korean Society of Grassland and Forage Science, 2011, 31, 229-234.	0.4	4
32	Plant Regeneration From Mature Seed of Domestic Italian Ryegrass Cultivar. Journal of the Korean Society of Grassland and Forage Science, 2011, 31, 235-242.	0.4	0