Bin Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4993225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of glucose oxidase as a feed additive: production, engineering, applications, growth-promoting mechanisms, and outlook. Critical Reviews in Biotechnology, 2023, 43, 698-715.	9.0	4
2	Preparation of methyl-esterified pectin oligosaccharides with antibacterial activity using fungus-derived bifunctional pectinase. Journal of Cleaner Production, 2022, 333, 130110.	9.3	10
3	Exploiting enzymes as a powerful tool to modulate the gut microbiota. Trends in Microbiology, 2022, 30, 314-317.	7.7	9
4	Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei. , 2022, 15, 26.		4
5	Enhancing the Thermostability of Phytase to Boiling Point by Evolution-Guided Design. Applied and Environmental Microbiology, 2022, 88, e0050622.	3.1	4
6	Engineering a carbohydrate-binding module to increase the expression level of glucoamylase in Pichia pastoris. Microbial Cell Factories, 2022, 21, .	4.0	3
7	Recombinant expression of hen egg white lysozyme with the assistance of xylanase fusion partner in <i>Pichia pastoris</i> . Bioengineered, 2022, 13, 13860-13871.	3.2	6
8	Boosting enzymatic degradation of cellulose using a fungal expansin: Structural insight into the pretreatment mechanism. Bioresource Technology, 2022, 358, 127434.	9.6	6
9	Patulin Detoxification by Recombinant Manganese Peroxidase from Moniliophthora roreri Expressed by Pichia pastoris. Toxins, 2022, 14, 440.	3.4	13
10	Exploiting the activity–stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chemistry, 2021, 342, 128270.	8.2	23
11	A Swollenin From Talaromyces leycettanus JCM12802 Enhances Cellulase Hydrolysis Toward Various Substrates. Frontiers in Microbiology, 2021, 12, 658096.	3.5	7
12	Cysteine Engineering of an Endo-polygalacturonase from <i>Talaromyces leycettanus</i> JCM 12802 to Improve Its Thermostability. Journal of Agricultural and Food Chemistry, 2021, 69, 6351-6359.	5.2	7
13	Enzymatic Degradation of Multiple Major Mycotoxins by Dye-Decolorizing Peroxidase from Bacillus subtilis. Toxins, 2021, 13, 429.	3.4	27
14	Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase. Toxins, 2021, 13, 602.	3.4	20
15	Structural Insights into the Mechanisms Underlying the Kinetic Stability of GH28 Endo-Polygalacturonase. Journal of Agricultural and Food Chemistry, 2021, 69, 815-823.	5.2	7
16	Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. Biotechnology for Biofuels, 2021, 14, 202.	6.2	27
17	Efficient Degradation of Aflatoxin B1 and Zearalenone by Laccase-like Multicopper Oxidase from Streptomyces thermocarboxydus in the Presence of Mediators. Toxins, 2021, 13, 754.	3.4	21
18	Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation. International Journal of Biological Macromolecules, 2020, 154, 1586-1595.	7.5	24

#	Article	IF	CITATIONS
19	Characterization, stability improvement, and bread baking applications of a novel cold-adapted glucose oxidase from Cladosporium neopsychrotolerans SL16. Food Chemistry, 2020, 310, 125970.	8.2	21
20	Biochemical Characterization and Mutational Analysis of a Lactone Hydrolase from <i>Phialophora americana</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 2570-2577.	5.2	21
21	Engineering the <i>cbh1</i> Promoter of <i>Trichoderma reesei</i> for Enhanced Protein Production by Replacing the Binding Sites of a Transcription Repressor ACE1 to Those of the Activators. Journal of Agricultural and Food Chemistry, 2020, 68, 1337-1346.	5.2	16
22	A novel thermostable aspartic protease from Talaromyces leycettanus and its specific autocatalytic activation through an intermediate transition state. Applied Microbiology and Biotechnology, 2020, 104, 4915-4926.	3.6	10
23	Engineering Protease-Resistant and Highly Active Phytases. Methods in Molecular Biology, 2020, 2091, 155-162.	0.9	Ο
24	Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express, 2019, 9, 13.	3.0	12
25	Characterization of two thermophilic cellulases from Talaromyces leycettanus JCM12802 and their synergistic action on cellulose hydrolysis. PLoS ONE, 2019, 14, e0224803.	2.5	11
26	Degradation of Aflatoxin B1 and Zearalenone by Bacterial and Fungal Laccases in Presence of Structurally Defined Chemicals and Complex Natural Mediators. Toxins, 2019, 11, 609.	3.4	55
27	Improvement of <i>Bs</i> APA Aspartic Protease Thermostability via Autocatalysis-Resistant Mutation. Journal of Agricultural and Food Chemistry, 2019, 67, 10505-10512.	5.2	16
28	A GH51 α-l-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microbial Cell Factories, 2019, 18, 138.	4.0	17
29	Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins, 2019, 11, 566.	3.4	67
30	High-level expression and characterization of a novel aspartic protease from Talaromyces leycettanus JCM12802 and its potential application in juice clarification. Food Chemistry, 2019, 281, 197-203.	8.2	17
31	The GH10 and GH48 dual-functional catalytic domains from a multimodular glycoside hydrolase synergize in hydrolyzing both cellulose and xylan. Biotechnology for Biofuels, 2019, 12, 279.	6.2	16
32	Development of <i>Bacillus amyloliquefaciens</i> as a high-level recombinant protein expression system. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 113-123.	3.0	17
33	Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution. Food Chemistry, 2019, 281, 163-170.	8.2	41
34	Insight into the Thermophilic Mechanism of a Glycoside Hydrolase Family 5 β-Mannanase. Journal of Agricultural and Food Chemistry, 2019, 67, 473-483.	5.2	18
35	Insight into the cold adaptation and hemicellulose utilization of Cladosporium neopsychrotolerans from genome analysis and biochemical characterization. Scientific Reports, 2018, 8, 6075.	3.3	8
36	Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnology for Biofuels, 2018, 11, 58.	6.2	38

#	Article	IF	CITATIONS
37	A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design. Applied Microbiology and Biotechnology, 2018, 102, 4457-4466.	3.6	11
38	A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnology for Biofuels, 2018, 11, 261.	6.2	44
39	Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. International Journal of Molecular Sciences, 2018, 19, 3373.	4.1	70
40	Functional Analysis of a Highly Active β-Glucanase from <i>Bispora</i> sp. MEY-1 Using Its C-terminally Truncated Mutant. Journal of Agricultural and Food Chemistry, 2018, 66, 9728-9737.	5.2	6
41	Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. Biotechnology for Biofuels, 2018, 11, 159.	6.2	21
42	A highly glucose-tolerant GH1 β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 369-378.	3.0	26
43	Impact of disulfide bonds on the folding and refolding capability of a novel thermostable GH45 cellulase. Applied Microbiology and Biotechnology, 2018, 102, 9183-9192.	3.6	17
44	Utility of Thermostable Xylanases of <i>Mycothermus thermophilus</i> in Generating Prebiotic Xylooligosaccharides. Journal of Agricultural and Food Chemistry, 2017, 65, 1139-1145.	5.2	32
45	Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency. Scientific Reports, 2017, 7, 42133.	3.3	11
46	Improving the Catalytic Performance of a <i>Talaromyces leycettanus</i> α-Amylase by Changing the Linker Length. Journal of Agricultural and Food Chemistry, 2017, 65, 5041-5048.	5.2	10
47	Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chemistry, 2017, 237, 997-1003.	8.2	19
48	Six new soil–inhabiting Cladosporium species from plateaus in China. Mycologia, 2017, 109, 244-260.	1.9	19
49	Loop 3 of Fungal Endoglucanases of Glycoside Hydrolase Family 12 Modulates Catalytic Efficiency. Applied and Environmental Microbiology, 2017, 83, .	3.1	19
50	Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose. Journal of Biological Chemistry, 2017, 292, 19315-19327.	3.4	35
51	Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei. Enzyme and Microbial Technology, 2017, 106, 83-87.	3.2	37
52	Engineering of <i>Yersinia</i> Phytases to Improve Pepsin and Trypsin Resistance and Thermostability and Application Potential in the Food and Feed Industry. Journal of Agricultural and Food Chemistry, 2017, 65, 7337-7344.	5.2	24
53	Efficient Coproduction of Mannanase and Cellulase by the Transformation of a Codon-Optimized Endomannanase Gene from <i>Aspergillus niger</i> into <i>Trichoderma reesei</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 11046-11053.	5.2	13
54	Thermostability improvement of a Talaromyces leycettanus xylanase by rational protein engineering. Scientific Reports, 2017, 7, 15287.	3.3	26

#	Article	IF	CITATIONS
55	Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals. Biotechnology for Biofuels, 2017, 10, 103.	6.2	44
56	Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. PLoS ONE, 2017, 12, e0189806.	2.5	13
57	Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities. Microbial Cell Factories, 2016, 15, 122.	4.0	38
58	Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. Biotechnology for Biofuels, 2016, 9, 147.	6.2	55
59	ldentification of the C-Terminal GH5 Domain from CbCel9B/Man5A as the First Glycoside Hydrolase with Thermal Activation Property from a Multimodular Bifunctional Enzyme. PLoS ONE, 2016, 11, e0156802.	2.5	12
60	The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1. Scientific Reports, 2016, 6, 31108.	3.3	19
61	Probing the role of cation-ï€ interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Scientific Reports, 2016, 6, 38413.	3.3	12
62	Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1. Scientific Reports, 2016, 6, 27062.	3.3	24
63	Substitution of a non-active-site residue located on the T3 loop increased the catalytic efficiency of endo -polygalacturonases. Process Biochemistry, 2016, 51, 1230-1238.	3.7	12
64	A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family. Applied and Environmental Microbiology, 2016, 82, 2718-2727.	3.1	25
65	Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. Bioresource Technology, 2016, 222, 277-284.	9.6	34
66	Improvement of the thermostability and catalytic efficiency of a highly active β-glucanase from Talaromyces leycettanus JCM12802 by optimizing residual charge–charge interactions. Biotechnology for Biofuels, 2016, 9, 124.	6.2	29
67	Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. Journal of Bioscience and Bioengineering, 2016, 122, 539-544.	2.2	18
68	The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability. Biochemical and Biophysical Research Communications, 2016, 481, 139-145.	2.1	12
69	Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chemistry, 2016, 197, 474-481.	8.2	27
70	A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry. Food Chemistry, 2016, 199, 516-523.	8.2	44
71	<i>N</i> -Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites. Applied and Environmental Microbiology, 2016, 82, 1004-1014.	3.1	40
72	Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain <i>Bacillus amyloliquefaciens</i> K11. Journal of Agricultural and Food Chemistry, 2016, 64, 78-84.	5.2	47

#	Article	IF	CITATIONS
73	Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics, 2016, 17, 89.	2.8	57
74	Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. Journal of Structural Biology, 2016, 193, 206-211.	2.8	32
75	Biochemical characterization of a novel thermophilic α-galactosidase from Talaromyces leycettanus JCM12802 with significant transglycosylation activity. Journal of Bioscience and Bioengineering, 2016, 121, 7-12.	2.2	28
76	Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions. PLoS ONE, 2016, 11, e0146373.	2.5	26
77	A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnology for Biofuels, 2015, 8, 197.	6.2	46
78	Production of a Highly Protease-Resistant Fungal Î \pm -Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing. PLoS ONE, 2015, 10, e0129294.	2.5	8
79	New Insights into the Role of T3 Loop in Determining Catalytic Efficiency of GH28 Endo-Polygalacturonases. PLoS ONE, 2015, 10, e0135413.	2.5	21
80	A Novel CH7 Endo-β-1,4-Clucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry. PLoS ONE, 2015, 10, e0137485.	2.5	16
81	Molecular Characterization of a New Alkaline-Tolerant Xylanase from <i>Humicola insolens</i> Y1. BioMed Research International, 2015, 2015, 1-7.	1.9	20
82	A zebrafish (Danio rerio) bloodthirsty member 20 with E3 ubiquitin ligase activity involved in immune response against bacterial infection. Biochemical and Biophysical Research Communications, 2015, 457, 83-89.	2.1	15
83	Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Applied Microbiology and Biotechnology, 2015, 99, 1217-1228.	3.6	41
84	Two thermophilic fungal pectinases from Neosartorya fischeri P1: Gene cloning, expression, and biochemical characterization. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 70-78.	1.8	13
85	Improvement in Thermostability of an Achaetomium sp. Strain Xz8 Endopolygalacturonase via the Optimization of Charge-Charge Interactions. Applied and Environmental Microbiology, 2015, 81, 6938-6944.	3.1	44
86	Biochemical characterization of three distinct polygalacturonases from Neosartorya fischeri P1. Food Chemistry, 2015, 188, 569-575.	8.2	26
87	The N-Terminal GH10 Domain of a Multimodular Protein from Caldicellulosiruptor bescii Is a Versatile Xylanase/β-Glucanase That Can Degrade Crystalline Cellulose. Applied and Environmental Microbiology, 2015, 81, 3823-3833.	3.1	53
88	Isolation of a Novel Cold-Active Family 11 Xylanase from the Filamentous Fungus Bispora antennata and Deletion of its N-Terminal Amino Acids on Thermostability. Applied Biochemistry and Biotechnology, 2015, 175, 925-936.	2.9	23
89	Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1. Applied Microbiology and Biotechnology, 2015, 99, 1261-1272.	3.6	20
90	A New GH43 α-Arabinofuranosidase from Humicola insolens Y1: Biochemical Characterization and Synergistic Action with a Xylanase on Xylan Degradation. Applied Biochemistry and Biotechnology, 2015, 175, 1960-1970.	2.9	33

#	Article	IF	CITATIONS
91	A thermophilic β-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chemistry, 2015, 173, 283-289.	8.2	57
92	A Neutral Thermostable β-1,4-Glucanase from Humicola insolens Y1 with Potential for Applications in Various Industries. PLoS ONE, 2015, 10, e0124925.	2.5	11
93	A Thermostable Glucoamylase from Bispora sp. MEY-1 with Stability over a Broad pH Range and Significant Starch Hydrolysis Capacity. PLoS ONE, 2014, 9, e113581.	2.5	32
94	Molecular Characterization of a Thermophilic Endo-polygalacturonase from <i>Thielavia arenaria</i> XZ7 with High Catalytic Efficiency and Application Potential in the Food and Feed Industries. Journal of Agricultural and Food Chemistry, 2014, 62, 12686-12694.	5.2	22
95	The Genome of the Myxosporean Thelohanellus kitauei Shows Adaptations to Nutrient Acquisition within Its Fish Host. Genome Biology and Evolution, 2014, 6, 3182-3198.	2.5	48
96	Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum). Biochemical and Biophysical Research Communications, 2014, 453, 425-431.	2.1	6
97	Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics, 2014, 15, 1167.	2.8	50
98	A C-Terminal Proline-Rich Sequence Simultaneously Broadens the Optimal Temperature and pH Ranges and Improves the Catalytic Efficiency of Glycosyl Hydrolase Family 10 Ruminal Xylanases. Applied and Environmental Microbiology, 2014, 80, 3426-3432.	3.1	16
99	Identification and molecular characterization of an Akirin2 homolog in Chinese loach (Paramisgurnus dabryanus). Fish and Shellfish Immunology, 2014, 36, 435-443.	3.6	14
100	A novel thermophilic endo-β-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Applied Microbiology and Biotechnology, 2014, 98, 2155-2163.	3.6	41
101	High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Applied Microbiology and Biotechnology, 2014, 98, 1651-1662.	3.6	38
102	A novel bifunctional pectinase from Penicillium oxalicum SX6 with separate pectin methylesterase and polygalacturonase catalytic domains. Applied Microbiology and Biotechnology, 2014, 98, 5019-5028.	3.6	21
103	Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chemistry, 2014, 148, 381-387.	8.2	86
104	New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria. Molecular Phylogenetics and Evolution, 2014, 81, 10-18.	2.7	34
105	A New α-Galactosidase from Thermoacidophilic Alicyclobacillus sp. A4 with Wide Acceptor Specificity for Transglycosylation. Applied Biochemistry and Biotechnology, 2014, 174, 328-338.	2.9	18
106	A highly-active endo-1,3-1,4-β-glucanase from thermophilic Talaromyces emersonii CBS394.64 with application potential in the brewing and feed industries. Process Biochemistry, 2014, 49, 1448-1456.	3.7	20
107	Thermostability Improvement of a Streptomyces Xylanase by Introducing Proline and Clutamic Acid Residues. Applied and Environmental Microbiology, 2014, 80, 2158-2165.	3.1	94
108	A thermophilic α-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Bioresource Technology, 2014, 153, 361-364.	9.6	50

#	Article	IF	CITATIONS
109	Cloning, expression, and characterization of a thermostable \hat{l}^2 -xylosidase from thermoacidophilic Alicyclobacillus sp. A4. Process Biochemistry, 2014, 49, 1422-1428.	3.7	17
110	Molecular Characterization of a Highly-Active Thermophilic β-Glucosidase from Neosartorya fischeri P1 and Its Application in the Hydrolysis of Soybean Isoflavone Glycosides. PLoS ONE, 2014, 9, e106785.	2.5	29
111	Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. Journal of Proteomics, 2013, 91, 226-241.	2.4	58
112	Molecular Cloning and Expression of a Novel β-Glucosidase Gene from Phialophora sp. G5. Applied Biochemistry and Biotechnology, 2013, 169, 941-949.	2.9	10
113	A family 5 Î ² -mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Applied Microbiology and Biotechnology, 2013, 97, 8121-8128.	3.6	39
114	A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochemistry, 2013, 48, 1879-1885.	3.7	22
115	High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chemistry, 2013, 141, 2974-2981.	8.2	66
116	Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresource Technology, 2013, 130, 161-167.	9.6	74
117	Two Family 11 Xylanases from Achaetomium sp. Xz-8 with High Catalytic Efficiency and Application Potentials in the Brewing Industry. Journal of Agricultural and Food Chemistry, 2013, 61, 6880-6889.	5.2	23
118	Overexpression of a Fungal β-Mannanase from Bispora sp. MEY-1 in Maize Seeds and Enzyme Characterization. PLoS ONE, 2013, 8, e56146.	2.5	10
119	Distinct Actions by Paenibacillus sp. Strain E18 α- <scp>l</scp> -Arabinofuranosidases and Xylanase in Xylan Degradation. Applied and Environmental Microbiology, 2013, 79, 1990-1995.	3.1	28
120	Comparative Quantitative Analysis of Gene Expression Profiles of Glycoside Hydrolase Family 10 Xylanases in the Sheep Rumen during a Feeding Cycle. Applied and Environmental Microbiology, 2013, 79, 1212-1220.	3.1	13
121	Characterization and biological function analysis of the trim3a gene from zebrafish (Danio rerio). Fish and Shellfish Immunology, 2012, 32, 621-628.	3.6	11
122	Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresource Technology, 2012, 121, 404-410.	9.6	27
123	A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good activity and stability over a wide pH range in the digestive tract. Bioresource Technology, 2012, 123, 171-176.	9.6	20
124	A novel thermoacidophilic and thermostable endo-β-1,4-glucanase from Phialophora sp. G5: its thermostability influenced by a distinct β-sheet and the carbohydrate-binding module. Applied Microbiology and Biotechnology, 2012, 95, 947-955.	3.6	18
125	Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from <i>Humicola insolens</i> Y1. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 547-555.	3.0	47
126	High-level expression of a novel <i>Penicillium</i> endo-1,3(4)-β- <scp>d</scp> -glucanase with high specific activity in <i>Pichia pastoris</i> . Journal of Industrial Microbiology and Biotechnology, 2012, 39, 869-876.	3.0	27

#	Article	IF	CITATIONS
127	Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chemistry, 2012, 131, 1473-1478.	8.2	73
128	Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 2012, 112, 275-279.	9.6	96
129	A Thermophilic Cellulase Complex from Phialophora sp. G5 Showing High Capacity in Cellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2012, 166, 952-960.	2.9	8
130	High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnology Letters, 2012, 34, 507-514.	2.2	41
131	A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochemistry, 2011, 46, 2341-2346.	3.7	35
132	Acidic β-mannanase from Penicillium pinophilum C1: Cloning, characterization and assessment of its potential for animal feed application. Journal of Bioscience and Bioengineering, 2011, 112, 551-557.	2.2	37
133	Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 523-530.	3.0	34
134	An acid and highly thermostable xylanase from Phialophora sp. G5. Applied Microbiology and Biotechnology, 2011, 89, 1851-1858.	3.6	31
135	Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Applied Microbiology and Biotechnology, 2011, 90, 1295-1302.	3.6	16
136	A novel acidic and low-temperature-active endo-polygalacturonase from Penicillium sp. CGMCC 1669 with potential for application in apple juice clarification. Food Chemistry, 2011, 129, 1369-1375.	8.2	54
137	A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: Direct cloning, expression and enzyme characterization. Bioresource Technology, 2011, 102, 3330-3336.	9.6	56
138	Cloning, expression and characterization of an acidic endo-polygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochemistry, 2011, 46, 272-277.	3.7	43
139	Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Applied Microbiology and Biotechnology, 2010, 85, 1015-1023.	3.6	49
140	Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Applied Microbiology and Biotechnology, 2010, 86, 1829-1839.	3.6	65
141	A novel family 9 β-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in the brewing industry. Applied Microbiology and Biotechnology, 2010, 87, 251-259.	3.6	42
142	An α-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with β-mannanase. Bioresource Technology, 2010, 101, 8376-8382.	9.6	64
143	A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 187-194.	3.0	48
144	Expression of an extremely acidic β-1,4-glucanase from thermoacidophilic Alicyclobacillus sp. A4 in Pichia pastoris is improved by truncating the gene sequence. Microbial Cell Factories, 2010, 9, 33.	4.0	18

#	Article	IF	CITATIONS
145	<i>Paenibacillus</i> sp. Strain E18 Bifunctional Xylanase-Glucanase with a Single Catalytic Domain. Applied and Environmental Microbiology, 2010, 76, 3620-3624.	3.1	60
146	Extremely Acidic β-1,4-Glucanase, CelA4, from Thermoacidophilic Alicyclobacillus sp. A4 with High Protease Resistance and Potential as a Pig Feed Additive. Journal of Agricultural and Food Chemistry, 2010, 58, 1970-1975.	5.2	25
147	An Acidophilic and Acid-Stable β-Mannanase from <i>Phialophora</i> sp. P13 with High Mannan Hydrolysis Activity under Simulated Gastric Conditions. Journal of Agricultural and Food Chemistry, 2010, 58, 3184-3190.	5.2	51
148	Diversity of Beta-Propeller Phytase Genes in the Intestinal Contents of Grass Carp Provides Insight into the Release of Major Phosphorus from Phytate in Nature. Applied and Environmental Microbiology, 2009, 75, 1508-1516.	3.1	99
149	A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles, 2009, 13, 849-857.	2.3	91
150	A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Applied Microbiology and Biotechnology, 2009, 82, 453-461.	3.6	97
151	A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Applied Microbiology and Biotechnology, 2009, 83, 99-107.	3.6	47
152	Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Applied Microbiology and Biotechnology, 2009, 85, 323-333.	3.6	57
153	Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme and Microbial Technology, 2009, 45, 126-133.	3.2	34
154	An Acidophilic β-Galactosidase from <i>Bispora</i> sp. MEY-1 with High Lactose Hydrolytic Activity under Simulated Gastric Conditions. Journal of Agricultural and Food Chemistry, 2009, 57, 5535-5541.	5.2	36
155	Molecular Cloning and Expression of a Novel Protease-resistant GH-36 α-Galactosidase from Rhizopus sp. F78 ACCC 30795. Journal of Microbiology and Biotechnology, 2009, 19, 1295-300.	2.1	24
156	High-level expression of a truncated 1,3-1,4-β-d-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Applied Microbiology and Biotechnology, 2008, 78, 95-103.	3.6	69
157	A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Applied Microbiology and Biotechnology, 2008, 80, 417-26.	3.6	45
158	A highly pH-stable phytase from Yersinia kristeensenii: Cloning, expression, and characterization. Enzyme and Microbial Technology, 2008, 42, 499-505.	3.2	26
159	Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme and Microbial Technology, 2007, 40, 1373-1380.	3.2	45
160	Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme and Microbial Technology, 2007, 41, 835-841.	3.2	29