
Jean-Christophe Sandoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4992534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The short neuropeptide F regulates appetitive but not aversive responsiveness in a social insect. IScience, 2022, 25, 103619.	1.9	13
2	The short neuropeptide F (sNPF) promotes the formation of appetitive visual memories in honey bees. Biology Letters, 2022, 18, 20210520.	1.0	8
3	Biological constraints on configural odour mixture perception. Journal of Experimental Biology, 2022, 225, .	0.8	3
4	Ants detect cancer cells through volatile organic compounds. IScience, 2022, 25, 103959.	1.9	17
5	Unraveling the motivational secrets of honey bee foraging during the COVID pandemic. IScience, 2022, 25, 104116.	1.9	0
6	Brain size and behavioral specialization in the jataÃ-stingless bee (<i>Tetragonisca angustula</i>). Journal of Comparative Neurology, 2022, 530, 2304-2314.	0.9	3
7	Antenna movements as a function of odorants' biological value in honeybees (Apis mellifera L.). Scientific Reports, 2022, 12, .	1.6	6
8	The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell and Tissue Research, 2021, 383, 177-194.	1.5	7
9	Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes: Evidence of an Association with Changes in Olfactory Epithelium Shape. Molecular Biology and Evolution, 2021, 38, 3742-3753.	3.5	14
10	Peripheral taste detection in honey bees: What do taste receptors respond to?. European Journal of Neuroscience, 2021, 54, 4417-4444.	1.2	22
11	Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. Scientific Reports, 2021, 11, 10947.	1.6	4
12	Interspecific variation of antennal lobe composition among four hornet species. Scientific Reports, 2021, 11, 20883.	1.6	1
13	Configural perception of a binary olfactory mixture in honey bees as in humans, rodents and newborn rabbits. Journal of Experimental Biology, 2020, 223, .	0.8	6
14	Degradation of an appetitive olfactory memory via devaluation of sugar reward is mediated by 5-HT signaling in the honey bee. Neurobiology of Learning and Memory, 2020, 173, 107278.	1.0	10
15	Genotypic trade-off between appetitive and aversive capacities in honeybees. Scientific Reports, 2019, 9, 10313.	1.6	12
16	Ants learn fast and do not forget: associative olfactory learning, memory and extinction in <i>Formica fusca</i> . Royal Society Open Science, 2019, 6, 190778.	1.1	30
17	Social Contact Acts as Appetitive Reinforcement and Supports Associative Learning in Honeybees. Current Biology, 2019, 29, 1407-1413.e3.	1.8	66
18	LPS perception through taste-induced reflex in Drosophila melanogaster. Journal of Insect Physiology, 2019, 112, 39-47.	0.9	12

#	Article	IF	CITATIONS
19	Differential Processing by Two Olfactory Subsystems in the Honeybee Brain. Neuroscience, 2018, 374, 33-48.	1.1	21
20	Azadirachtin effects on mating success, gametic abnormalities and progeny survival in <i>Drosophila melanogaster</i> (Diptera). Pest Management Science, 2018, 74, 174-180.	1.7	24
21	Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus <i>Apis</i>). Journal of Comparative Neurology, 2018, 526, 3020-3034.	0.9	8
22	Aminergic neuromodulation of associative visual learning in harnessed honey bees. Neurobiology of Learning and Memory, 2018, 155, 556-567.	1.0	22
23	Sexual dimorphism in visual and olfactory brain centers in the perfumeâ€collecting orchid bee <i>Euglossa dilemma</i> (Hymenoptera, Apidae). Journal of Comparative Neurology, 2018, 526, 2068-2077.	0.9	9
24	Associative visual learning by tethered bees in a controlled visual environment. Scientific Reports, 2017, 7, 12903.	1.6	30
25	Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide Biochemistry and Physiology, 2017, 143, 95-101.	1.6	11
26	Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca2+ channel antagonist. Scientific Reports, 2017, 7, 41782.	1.6	5
27	Virgin queen attraction toward males in honey bees. Scientific Reports, 2017, 7, 6293.	1.6	11
28	Decoding ants' olfactory system sheds light on the evolution of social communication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8911-8913.	3.3	20
29	Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera?. Frontiers in Neuroanatomy, 2017, 11, 48.	0.9	22
30	Age-specific olfactory attraction between Western honey bee drones (Apis mellifera) and its chemical basis. PLoS ONE, 2017, 12, e0185949.	1.1	6
31	Olfactory pathway of the hornet <i>Vespa velutina</i> : New insights into the evolution of the hymenopteran antennal lobe. Journal of Comparative Neurology, 2016, 524, 2335-2359.	0.9	24
32	A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera. PLoS ONE, 2015, 10, e0144879.	1.1	62
33	Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA. Frontiers in Physiology, 2015, 6, 316.	1.3	15
34	Odourant dominance in olfactory mixture processing: what makes a strong odourant?. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142562.	1.2	20
35	Sexual dimorphism and phenotypic plasticity in the antennal lobe of a stingless bee, <i>Melipona scutellaris</i> . Journal of Comparative Neurology, 2015, 523, 1461-1473.	0.9	18
36	Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. Insect Biochemistry and Molecular Biology, 2015, 58, 12-27.	1.2	18

#	Article	IF	CITATIONS
37	Differential Combinatorial Coding of Pheromones in Two Olfactory Subsystems of the Honey Bee Brain. Journal of Neuroscience, 2015, 35, 4157-4167.	1.7	46
38	Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5854-62.	3.3	110
39	Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees. Learning and Memory, 2015, 22, 604-616.	0.5	20
40	Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract. Frontiers in Integrative Neuroscience, 2015, 9, 75.	1.0	16
41	Honeybee drones are attracted by groups of consexuals in a walking simulator. Journal of Experimental Biology, 2014, 217, 1278-85.	0.8	19
42	Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure. PLoS ONE, 2014, 9, e97333.	1.1	19
43	Olfactory Coding in the Honeybee Lateral Horn. Current Biology, 2014, 24, 561-567.	1.8	53
44	Cyclic nucleotide–gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee. Learning and Memory, 2014, 21, 272-286.	0.5	37
45	Olfactory Attraction of the Hornet Vespa velutina to Honeybee Colony Odors and Pheromones. PLoS ONE, 2014, 9, e115943.	1.1	41
46	Two waves of transcription are required for long-term memory in the honeybee. Learning and Memory, 2013, 20, 29-33.	0.5	47
47	Chromatic Processing in the Anterior Optic Tubercle of the Honey Bee Brain. Journal of Neuroscience, 2013, 33, 4-16.	1.7	49
48	Neural Correlates of Olfactory Learning in the Primary Olfactory Center of the Honeybee Brain. Handbook of Behavioral Neuroscience, 2013, , 416-432.	0.7	1
49	Classical Conditioning of the Proboscis Extension Reflex in the Honeybee. , 2013, , 15-35.		1
50	Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning and Memory, 2012, 19, 54-66.	0.5	327
51	Differential coding by two olfactory subsystems in the honeybee brain. Journal of Neurophysiology, 2012, 108, 1106-1121.	0.9	34
52	Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. Journal of Neuroscience Methods, 2012, 211, 159-167.	1.3	204
53	Olfaction in Honey Bees: From Molecules to Behavior. , 2012, , 235-252.		6
54	Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth. PLoS ONE, 2012, 7, e33159.	1.1	64

JEAN-CHRISTOPHE SANDOZ

#	Article	IF	CITATIONS
55	Early olfactory experience induces structural changes in the primary olfactory center of an insect brain. European Journal of Neuroscience, 2012, 35, 682-690.	1.2	46
56	Optical imaging of concealed brain activity using a gold mirror in honeybees. Journal of Insect Physiology, 2012, 58, 743-749.	0.9	14
57	Visual conditioning of the sting extension reflex in harnessed honeybees. Journal of Experimental Biology, 2011, 214, 3577-3587.	0.8	20
58	Neural Organization and Visual Processing in the Anterior Optic Tubercle of the Honeybee Brain. Journal of Neuroscience, 2011, 31, 11443-11456.	1.7	54
59	Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees. Frontiers in Systems Neuroscience, 2011, 5, 98.	1.2	97
60	Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learning and Memory, 2011, 18, 144-155.	0.5	58
61	Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals. BMC Neuroscience, 2010, 11, 28.	0.8	24
62	Searching for learning-dependent changes in the antennal lobe: simultaneous recording of neural activity and aversive olfactory learning in honeybees. Frontiers in Behavioral Neuroscience, 2010, 4, .	1.0	11
63	Antennal Lobe Processing Increases Separability of Odor Mixture Representations in the Honeybee. Journal of Neurophysiology, 2010, 103, 2185-2194.	0.9	95
64	Long-Term Memory Leads to Synaptic Reorganization in the Mushroom Bodies: A Memory Trace in the Insect Brain?. Journal of Neuroscience, 2010, 30, 6461-6465.	1.7	170
65	Long-term memory shapes the primary olfactory center of an insect brain. Learning and Memory, 2009, 16, 607-615.	0.5	71
66	Olfactory conditioning of the sting extension reflex in honeybees: Memory dependence on trial number, interstimulus interval, intertrial interval, and protein synthesis. Learning and Memory, 2009, 16, 761-765.	0.5	49
67	Odour aversion after olfactory conditioning of the sting extension reflex in honeybees. Journal of Experimental Biology, 2009, 212, 620-626.	0.8	59
68	Early calcium increase triggers the formation of olfactory long-term memory in honeybees. BMC Biology, 2009, 7, 30.	1.7	41
69	Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage. European Journal of Neuroscience, 2009, 30, 1498-1508.	1.2	45
70	Effect of fipronil on side-specific antennal tactile learning in the honeybee. Journal of Insect Physiology, 2009, 55, 1099-1106.	0.9	37
71	Reappraising Social Insect Behavior through Aversive Responsiveness and Learning. PLoS ONE, 2009, 4, e4197.	1.1	57

Neurobiology of olfactory communication in the honeybee. , 2008, , 119-138.

2

JEAN-CHRISTOPHE SANDOZ

#	Article	IF	CITATIONS
73	Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Frontiers in Behavioral Neuroscience, 2007, 1, 5.	1.0	55
74	The trial-spacing effect in olfactory patterning discriminations in honeybees. Behavioural Brain Research, 2007, 176, 314-322.	1.2	62
75	Effects of two bitter substances on olfactory conditioning in the moth Heliothis virescens. Journal of Experimental Biology, 2007, 210, 2563-2573.	0.8	25
76	CNG channel, calmodulin and CaMKII underlie olfactory long-term memory formation in the honeybee. Neuroscience Research, 2007, 58, S227.	1.0	0
77	Aversive Learning in Honeybees Revealed by the Olfactory Conditioning of the Sting Extension Reflex. PLoS ONE, 2007, 2, e288.	1.1	261
78	Neural representation of olfactory mixtures in the honeybee antennal lobe. European Journal of Neuroscience, 2006, 24, 1161-1174.	1.2	137
79	Individual olfactory learning in Camponotus ants. Animal Behaviour, 2006, 72, 1081-1091.	0.8	102
80	Odour-evoked responses to queen pheromone components and to plant odours using optical imaging in the antennal lobe of the honey bee drone Apis mellifera L Journal of Experimental Biology, 2006, 209, 3587-3598.	0.8	70
81	Partial unilateral lesions of the mushroom bodies affect olfactory learning in honeybeesApis melliferaL European Journal of Neuroscience, 2005, 21, 477-485.	1.2	37
82	Perceptual and Neural Olfactory Similarity in Honeybees. PLoS Biology, 2005, 3, e60.	2.6	272
83	Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens. Journal of Experimental Biology, 2005, 208, 787-796.	0.8	43
84	Learning and Discrimination of Individual Cuticular Hydrocarbons by Honeybees (Apis mellifera). Chemical Senses, 2005, 30, 327-335.	1.1	107
85	Could learning of pollen odours by honey bees (Apis mellifera) play a role in their foraging behaviour?. Physiological Entomology, 2005, 30, 164-174.	0.6	41
86	Spontaneous Recovery After Extinction of the Conditioned Proboscis Extension Response in the Honeybee. Learning and Memory, 2004, 11, 586-597.	0.5	31
87	Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Animal Behaviour, 2003, 66, 1077-1084.	0.8	43
88	Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neuroscience, 2003, 120, 1137-1148.	1.1	72
89	Non-elemental processing in olfactory discrimination tasks needs bilateral input in honeybees. Behavioural Brain Research, 2003, 145, 135-143.	1.2	69
90	A Modified Version of the Unique Cue Theory Accounts for Olfactory Compound Processing in Honeybees. Learning and Memory, 2003, 10, 199-208.	0.5	72

#	Article	IF	CITATIONS
91	Learning and discrimination of honey odours by the honey bee. Apidologie, 2003, 34, 147-159.	0.9	14
92	Side-Specificity of Olfactory Learning in the Honeybee: US Input Side. Learning and Memory, 2002, 9, 337-348.	0.5	41
93	Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 559-568.	0.7	51
94	Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides. Learning and Memory, 2001, 8, 286-294.	0.5	55
95	Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposure. Animal Behaviour, 2000, 59, 1025-1034.	0.8	76
96	Olfactory conditioning of the proboscis extension in bumble bees. Entomologia Experimentalis Et Applicata, 1999, 90, 123-129.	0.7	77
97	Effect of Conditioning on Discrimination of Oilseed Rape Volatiles by the Honeybee: Use of a Combined Gas Chromatography-Proboscis Extension Behavioural Assay. Chemical Senses, 1997, 22, 391-398.	1.1	27
98	Discrimination of oilseed rape volatiles by the honeybee: combined chemical and biological approaches. Entomologia Experimentalis Et Applicata, 1997, 83, 87-92.	0.7	20