
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quadrol-Pd(<scp>ii</scp>) complexes: phosphine-free precatalysts for the room-temperature Suzuki–Miyaura synthesis of nucleoside analogues in aqueous media. Dalton Transactions, 2022, 51, 2370-2384.	3.3	11
2	Electrochemical Oscillatory Baffled Reactors Fabricated with Additive Manufacturing for Efficient Continuous-Flow Oxidations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2388-2396.	6.7	6
3	Unraveling the Metabolic Hallmarks for the Optimization of Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients. Nutrients, 2022, 14, 1182.	4.1	1
4	Supported ionic liquid-like phases as efficient solid ionic solvents for the immobilisation of alcohol dehydrogenases towards the development of stereoselective bioreductions. Green Chemistry, 2021, 23, 5609-5617.	9.0	9
5	Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions. Ultrasonics Sonochemistry, 2021, 75, 105606.	8.2	15
6	The Suitability of Lipases for the Synthesis of Bioactive Compounds with Cosmeceutical Applications. Mini-Reviews in Organic Chemistry, 2021, 18, 515-528.	1.3	5
7	Sustainable chemo-enzymatic synthesis of glycerol carbonate (meth)acrylate from glycidol and carbon dioxide enabled by ionic liquid technologies. Green Chemistry, 2021, 23, 4191-4200.	9.0	12
8	Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO ₂ to Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 2309-2318.	6.7	23
9	Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids. Catalysis Today, 2020, 346, 87-92.	4.4	34
10	Chemo-enzymatic production of omega-3 monoacylglycerides using sponge-like ionic liquids and supercritical carbon dioxide. Green Chemistry, 2020, 22, 5701-5710.	9.0	14
11	Imine-Palladacycles as Phosphine-Free Precatalysts for Low-Temperature Suzuki–Miyaura Synthesis of Nucleoside Analogues in Aqueous Media. Organometallics, 2020, 39, 4479-4490.	2.3	9
12	From Coordination Complexes to Potential Heterogeneous Catalysts via Solidâ€State Thermal Decomposition: Precursor, Atmosphere and Temperature as Tuning Variables. ChemistrySelect, 2019, 4, 8365-8371.	1.5	2
13	Clean Enzymatic Production of Flavor Esters in Spongelike Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 13307-13314.	6.7	22
14	Biocatalytic synthesis of panthenyl monoacyl esters in ionic liquids and deep eutectic solvents. Green Chemistry, 2019, 21, 3353-3361.	9.0	24
15	lonic liquids as an enabling tool to integrate reaction and separation processes. Green Chemistry, 2019, 21, 6527-6544.	9.0	55
16	Ionic Liquids in Clean and Sustainable Biocatalytic Organic Reactions. , 2019, , 1-13.		0
17	New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation. Chemical Communications, 2018, 54, 2385-2388.	4.1	11
18	Dimethyl carbonate as a non-innocent benign solvent for the multistep continuous flow synthesis of amino alcohols. Reaction Chemistry and Engineering, 2018, 3, 572-578.	3.7	17

#	Article	IF	CITATIONS
19	Ionic Liquids for Clean Biocatalytic Processes. Current Green Chemistry, 2018, 4, .	1.1	8
20	Highly selective biocatalytic synthesis of monoacylglycerides in sponge-like ionic liquids. Green Chemistry, 2017, 19, 390-396.	9.0	37
21	Flow Biocatalytic Processes in Ionic Liquids and Supercritical Fluids. Mini-Reviews in Organic Chemistry, 2017, 14, 65-74.	1.3	20
22	Clean Enzymatic Preparation of Oxygenated Biofuels from Vegetable and Waste Cooking Oils by Using Spongelike Ionic Liquids Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 6125-6132.	6.7	30
23	Supramolecular Interactions Based on Ionic Liquids for Tuning of the Catalytic Efficiency of (<scp>l</scp>)-Proline. ACS Sustainable Chemistry and Engineering, 2016, 4, 6062-6071.	6.7	11
24	lonic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chemistry, 2015, 17, 2693-2713.	9.0	98
25	Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catalysis Today, 2015, 255, 97-101.	4.4	28
26	N-Heterocyclic-Carbene Complexes Readily Prepared from Di-μ-hydroxopalladacycles Catalyze the Suzuki Arylation of 9-Bromophenanthrene. Organometallics, 2015, 34, 522-533.	2.3	37
27	Pd–imidate complexes as recyclable catalysts for the synthesis of C5-alkenylated pyrimidine nucleosides via Heck cross-coupling reaction. RSC Advances, 2015, 5, 24558-24563.	3.6	24
28	Microwave-Assisted Selective Oxidation of 1-Phenyl Ethanol in Water Catalyzed by Metal Nanoparticles Immobilized onto Supported Ionic Liquidlike Phases. ACS Catalysis, 2015, 5, 4743-4750.	11.2	27
29	Sponge-like ionic liquids: a new platform for green biocatalytic chemical processes. Green Chemistry, 2015, 17, 3706-3717.	9.0	67
30	Green bioprocesses in sponge-like ionic liquids. Catalysis Today, 2015, 255, 54-59.	4.4	26
31	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chemical Communications, 2015, 51, 17361-17374.	4.1	37
32	A sustainable process for enzymatic saccharification of ionic liquid-pretreated cellulosic materials. Green Processing and Synthesis, 2014, 3, .	3.4	3
33	Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads. RSC Advances, 2014, 4, 6219.	3.6	31
34	Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose. Bioresource Technology, 2014, 151, 159-165.	9.6	38
35	Macroporous polymers tailored as supports for large biomolecules: Ionic liquids as porogenic solvents and as surface modifiers. Reactive and Functional Polymers, 2014, 85, 20-27.	4.1	10
36	[Pd(Phbz)(X)(PPh3)] palladacycles promote the base-free homocoupling of arylboronic acids in air at room temperature. RSC Advances, 2014, 4, 55305-55312.	3.6	18

#	Article	IF	CITATIONS
37	New water soluble Pd-imidate complexes as highly efficient catalysts for the synthesis of C5-arylated pyrimidine nucleosides. RSC Advances, 2014, 4, 17567-17572.	3.6	44
38	An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Advances, 2013, 3, 13123.	3.6	24
39	How to produce biodiesel easily using a green biocatalytic approach in sponge-like ionic liquids. Energy and Environmental Science, 2013, 6, 1328.	30.8	69
40	A Green Approach for Producing Solvent-free Anisyl Acetate by Enzymecatalyzed Direct Esterification in Sponge-like Ionic Liquids Under Conventional and Microwave Heating. Current Green Chemistry, 2013, 1, 145-154.	1.1	11
41	Efficient and selective enzymatic synthesis of N-acetyl-lactosamine in ionic liquid: a rational explanation. RSC Advances, 2012, 2, 6306.	3.6	34
42	A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chemistry, 2012, 14, 3026.	9.0	75
43	A cyclic process for full enzymatic saccharification of pretreated cellulose with full recovery and reuse of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2012, 14, 2631.	9.0	49
44	Supercritical Synthesis of Biodiesel. Molecules, 2012, 17, 8696-8719.	3.8	63
45	Immobilised Lipase on Structured Supports Containing Covalently Attached Ionic Liquids for the Continuous Synthesis of Biodiesel in scCO ₂ . ChemSusChem, 2012, 5, 790-798.	6.8	64
46	Inside Cover: Immobilised Lipase on Structured Supports Containing Covalently Attached Ionic Liquids for the Continuous Synthesis of Biodiesel in scCO2 (ChemSusChem 4/2012). ChemSusChem, 2012, 5, 602-602.	6.8	0
47	Achieving Chemo-, Regio-, and Stereoselectivity in Palladium-Catalyzed Reaction of Î ³ -Borylated Allylic Acetates. Organic Letters, 2011, 13, 4132-4135.	4.6	23
48	An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chemistry, 2011, 13, 444.	9.0	78
49	Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2011, 13, 1406.	9.0	60
50	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	0
51	Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems. Fuel, 2011, 90, 3461-3467.	6.4	87
52	A recyclable enzymatic biodiesel production process in ionic liquids. Bioresource Technology, 2011, 102, 6336-6339.	9.6	68
53	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	28
54	Enzymatic Membrane Reactor for Resolution of Ketoprofen in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2010, , 25-34.	0.5	1

#	Article	IF	CITATIONS
55	Oneâ€Phase Ionic Liquid Reaction Medium for Biocatalytic Production of Biodiesel. ChemSusChem, 2010, 3, 1359-1363.	6.8	53
56	Enzyme Catalysis in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2010, , 181-196.	0.5	3
57	Enzymes in neoteric solvents: From one-phase to multiphase systems. Green Chemistry, 2010, 12, 555.	9.0	172
58	Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 2010, 12, 1803.	9.0	60
59	Dynamic Kinetic Resolution of Sec-Alcohols in Ionic Liquids/Supercritical Carbon Dioxide Biphasic Systems. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	8
60	On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. Journal of Biotechnology, 2009, 140, 234-241.	3.8	104
61	Long term continuous chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol using ionic liquids and supercritical carbon dioxide. Green Chemistry, 2009, 11, 538.	9.0	59
62	A Continuous Reactor for the (Chemo)enzymatic Dynamic Kinetic Resolution of Rac-1-Phenylethanol in Ionic Liquid/Supercritical Carbon Dioxide Biphasic Systems. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	11
63	Ionic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chemistry, 2007, 9, 780.	9.0	73
64	Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2007, 349, 1077-1084.	4.3	128
65	On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. Journal of Supercritical Fluids, 2007, 40, 93-100.	3.2	72
66	Toward Green Processes for Fine Chemicals Synthesis: Biocatalysis in Ionic Liquid—Supercritical Carbon Dioxide Biphasic Systems. ACS Symposium Series, 2007, , 209-223.	0.5	1
67	Immobilization of Enzymes for Use in Supercritical Fluids. Methods in Biotechnology, 2006, , 269-282.	0.2	1
68	Immobilization of Enzymes for Use in Ionic Liquids. Methods in Biotechnology, 2006, , 257-268.	0.2	7
69	Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids in ionic liquids/supercritical carbon dioxide systems. Biotechnology Letters, 2006, 28, 1559-1565.	2.2	68
70	A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support. Catalysis Today, 2005, 104, 313-317.	4.4	38
71	Polyhydric alcohol protective effect on Rhizomucor miehei lipase deactivation enhanced by pressure and temperature treatment. Bioprocess and Biosystems Engineering, 2005, 27, 375-380.	3.4	15
72	Dynamic structure–function relationships in enzyme stabilization by ionic liquids. Biocatalysis and Biotransformation, 2005, 23, 169-176.	2.0	70

#	Article	IF	CITATIONS
73	Understanding Structureâ^'Stability Relationships ofCandidaantarticaLipase B in Ionic Liquids. Biomacromolecules, 2005, 6, 1457-1464.	5.4	301
74	Criteria to Design Green Enzymatic Processes in Ionic Liquid/Supercritical Carbon Dioxide Systems. Biotechnology Progress, 2004, 20, 661-669.	2.6	134
75	Kinetic resolution of rac-2-pentanol catalyzed by Candida antarctica lipase B in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnology Letters, 2004, 26, 301-306.	2.2	54
76	Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. Journal of Supercritical Fluids, 2004, 29, 121-128.	3.2	85
77	Fluorescence and CD spectroscopic analysis of the ?-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnology and Bioengineering, 2004, 88, 916-924.	3.3	190
78	Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. Journal of Molecular Catalysis A, 2004, 214, 113-119.	4.8	61
79	Enzymatic Catalysis in Ionic Liquids and Supercritical Carbon Dioxide. ACS Symposium Series, 2003, , 239-250.	0.5	9
80	Enzymatic ester synthesis in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 9-13.	1.8	114
81	Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilizedCandida antarctica lipase B. Biotechnology and Bioengineering, 2003, 82, 352-358.	3.3	15
82	Lipase Catalysis in Ionic Liquids and Supercritical Carbon Dioxide at 150 °C. Biotechnology Progress, 2003, 19, 380-382.	2.6	136
83	Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, , 692-693.	4.1	212
84	Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. Journal of Membrane Science, 2002, 201, 55-64.	8.2	69
85	Stabilization of ?-chymotrypsin by ionic liquids in transesterification reactions. Biotechnology and Bioengineering, 2001, 75, 563-569.	3.3	233
86	Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnology Letters, 2001, 23, 1529-1533.	2.2	223
87	Preparation of hybrid membranes for enzymatic reaction. Separation and Purification Technology, 2001, 25, 229-233.	7.9	33
88	Designing enzymatic kyotorphin synthesis in organic media with low water content. Enzyme and Microbial Technology, 2000, 26, 608-613.	3.2	17
89	Title is missing!. Biotechnology Letters, 2000, 22, 771-775.	2.2	15
90	A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. Journal of Proteomics, 2000, 43, 367-378.	2.4	105

#	Article	IF	CITATIONS
91	A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products Journal of Chromatography A, 1999, 830, 477-483.	3.7	120
92	Glycosylated α-chymotrypsin as a catalyst for kyotorphin synthesis in water-organic media. Biotechnology Letters, 1999, 21, 595-599.	2.2	15
93	Kinetic analysis of deactivation of immobilized ?-chymotrypsin by water-miscible organic solvent in kyotorphin synthesis. Biotechnology and Bioengineering, 1999, 65, 170-175.	3.3	14
94	Kinetic analysis of deactivation of immobilized α-chymotrypsin by water-miscible organic solvent in kyotorphin synthesis. Biotechnology and Bioengineering, 1999, 65, 170.	3.3	0
95	Stability of immobilized enzyme-polyelectrolyte complex against irreversible inactivation by organic solvents. Progress in Biotechnology, 1998, 15, 417-422.	0.2	2
96	Dynamic Structure/Function Relationships in the alpha-Chymotrypsin Deactivation Process by Heat and pH. FEBS Journal, 1997, 248, 80-85.	0.2	55
97	Pectic enzymes in fresh fruit processing: optimization of enzymic peeling of oranges. Process Biochemistry, 1997, 32, 43-49.	3.7	51
98	Title is missing!. Biotechnology Letters, 1997, 19, 1005-1009.	2.2	9
99	Stability of immobilized ?-chymotrypsin in supercritical carbon dioxide. Biotechnology Letters, 1996, 18, 1345-1350.	2.2	37
100	Influence of Water-Miscible Aprotic Solvents on α-Chymotrypsin Stability. Biotechnology Progress, 1996, 12, 488-493.	2.6	23
101	Peptide Synthesis by Papain in Alkali Halide Media. Biocatalysis and Biotransformation, 1996, 13, 255-269.	2.0	2
102	Effect of water-miscible aprotic solvents on kyotorphin synthesis catalyzed by immobilized ?-chymotrypsin. Biotechnology Letters, 1995, 17, 603-608.	2.2	26
103	A practical experiment on enzyme immobilization and characterization of the immobilized derivatives. Biochemical Education, 1995, 23, 213-216.	0.1	11
104	Food Protein Nutrient Improvement by Protease at Reduced Water Activity. Journal of Food Science, 1994, 59, 876-880.	3.1	4
105	Effect of polyols on α-chymotrypsin thermostability: a mechanistic analysis of the enzyme stabilization. Journal of Biotechnology, 1994, 35, 9-18.	3.8	88
106	Effect of alkali halides on α-chymotrypsin activity in the plastein reaction. Journal of the Science of Food and Agriculture, 1993, 62, 245-252.	3.5	6
107	Influence of polyhydroxylic cosolvents on papain thermostability. Enzyme and Microbial Technology, 1993, 15, 868-873.	3.2	17
108	Synthesis of L-tyrosine glyceryl ester catalyzed by α-chymotrypsin in water-miscible organic solvents: A possible sun-tan accelerator product. Biotechnology Letters, 1993, 15, 1223-1228.	2.2	7

#	Article	IF	CITATIONS
109	?-Chymotrypsin in Plastein Synthesis Influence of Water Activity. Annals of the New York Academy of Sciences, 1992, 672, 409-414.	3.8	7
110	One-step synthesis of Gly-Gly-PheNH2 from N-unprotected amino acid derivatives by papain in one-phase liquid media. Biotechnology Letters, 1992, 14, 933-936.	2.2	10
111	α-chymotrypsin in plastein synthesis. Applied Biochemistry and Biotechnology, 1992, 33, 51-65.	2.9	10
112	?-Chymotrypsin in Plastein Synthesis Influence of Water Activity. Annals of the New York Academy of Sciences, 1992, 672, 409-414.	3.8	17
113	Characteristics of the immobilized pectin lyase activity from a commercial pectolytic enzyme preparation. Acta Biotechnologica, 1990, 10, 531-539.	0.9	14
114	Kinetic and operational study of a cross-flow reactor with immobilized pectolytic enzymes. Enzyme and Microbial Technology, 1990, 12, 499-505.	3.2	27
115	A cross-flow reactor with immobilized pectolytic enzymes for juice clarification. Biotechnology Letters, 1987, 9, 875-880.	2.2	31