Marcus Groettrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4992380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Rat Orthotopic Renal Transplantation Model for Renal Allograft Rejection. Journal of Visualized Experiments, 2022, , .	0.2	1
2	PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. European Journal of Pharmaceutical Sciences, 2022, 175, 106209.	1.9	5
3	Immunoproteasome Inhibition Reduces the T Helper 2 Response in Mouse Models of Allergic Airway Inflammation. Frontiers in Immunology, 2022, 13, .	2.2	6
4	Effective therapy of polymyositis in mice via selective inhibition of the immunoproteasome. European Journal of Immunology, 2022, 52, 1510-1522.	1.6	7
5	Evidence for an involvement of the ubiquitinâ€like modifier ISG15 in MHC class I antigen presentation. European Journal of Immunology, 2021, 51, 138-150.	1.6	12
6	Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Reports, 2021, 34, 108857.	2.9	22
7	Immunoproteasome Upregulation Is Not Required to Control Protein Homeostasis during Viral Infection. Journal of Immunology, 2021, 206, 1697-1708.	0.4	7
8	Silencing of the proteasome and oxidative stress impair endoplasmic reticulum targeting and signal cleavage of a prostate carcinoma antigen. Biochemical and Biophysical Research Communications, 2021, 554, 56-62.	1.0	1
9	PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nature Communications, 2021, 12, 2935.	5.8	84
10	On the Role of the Immunoproteasome in Protein Homeostasis. Cells, 2021, 10, 3216.	1.8	22
11	The ubiquitin-like modifier FAT10 – much more than a proteasome-targeting signal. Journal of Cell Science, 2020, 133, .	1.2	14
12	Recent insights how combined inhibition of immuno/proteasome subunits enables therapeutic efficacy. Genes and Immunity, 2020, 21, 273-287.	2.2	25
13	The ubiquitin-like modifier FAT10 inhibits retinal PDE6 activity and mediates its proteasomal degradation. Journal of Biological Chemistry, 2020, 295, 14402-14418.	1.6	6
14	FAT10 localizes in dendritic cell aggresome-like induced structures and contributes to their disassembly. Journal of Cell Science, 2020, 133, .	1.2	2
15	Regulation of Interferon Induction by the Ubiquitin-Like Modifier FAT10. Biomolecules, 2020, 10, 951.	1.8	7
16	Competitive Metabolite Profiling of Natural Products Reveals Subunit Specific Inhibitors of the 20S Proteasome. ACS Central Science, 2020, 6, 241-246.	5.3	15
17	Immunoproteasome Inhibition Selectively Kills Human CD14+ Monocytes and as a Result Dampens IL-23 Secretion. Journal of Immunology, 2019, 203, 1776-1785.	0.4	18
18	The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nature Communications, 2019, 10, 4452	5.8	29

#	Article	IF	CITATIONS
19	Immunoproteasome inhibition induces plasma cell apoptosis and preserves kidney allografts by activating the unfolded protein response and suppressing plasma cell survival factors. Kidney International, 2019, 95, 611-623.	2.6	25
20	Analysis of modification and proteolytic targeting by the ubiquitin-like modifier FAT10. Methods in Enzymology, 2019, 618, 229-256.	0.4	8
21	Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)—Mediated Anti-tumor Therapy. Frontiers in Immunology, 2019, 10, 707.	2.2	53
22	The ubiquitin-like modifier FAT10 stimulates the activity of deubiquitylating enzyme OTUB1. Journal of Biological Chemistry, 2019, 294, 4315-4330.	1.6	20
23	The ubiquitin-like modifier FAT10 is required for normal IFN-γ production by activated CD8+ T cells. Molecular Immunology, 2019, 108, 111-120.	1.0	13
24	On the role of the immunoproteasome in transplant rejection. Immunogenetics, 2019, 71, 263-271.	1.2	14
25	The 20S immunoproteasome and constitutive proteasome bind with the same affinity to PA28αβ and equally degrade FAT10. Molecular Immunology, 2019, 113, 22-30.	1.0	14
26	The expression profile of the ubiquitin-like modifier FAT10 in immune cells suggests cell type-specific functions. Immunogenetics, 2018, 70, 429-438.	1.2	11
27	Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Scientific Reports, 2018, 8, 5975.	1.6	13
28	Amelioration of autoimmunity with an inhibitor selectively targeting all active centres of the immunoproteasome. British Journal of Pharmacology, 2018, 175, 38-52.	2.7	30
29	The immunoproteasome subunit LMP7 is required in the murine thymus for filling up a hole in the TÂcell repertoire. European Journal of Immunology, 2018, 48, 419-429.	1.6	19
30	Immunoproteasome inhibition prevents chronic antibody-mediated allograft rejection in renalÂtransplantation. Kidney International, 2018, 93, 670-680.	2.6	43
31	Immunoproteasome Inhibition Impairs T and B Cell Activation by Restraining ERK Signaling and Proteostasis. Frontiers in Immunology, 2018, 9, 2386.	2.2	43
32	Coâ€inhibition of immunoproteasome subunits LMP2 and LMP7 is required to block autoimmunity. EMBO Reports, 2018, 19, .	2.0	51
33	Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death and Differentiation, 2018, 25, 2101-2117.	5.0	39
34	The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nature Communications, 2018, 9, 3321.	5.8	25
35	Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-κB activation. Molecular Immunology, 2017, 83, 147-153.	1.0	29
36	Chronic stress suppresses anti-tumor TCD8+ responses and tumor regression following cancer immunotherapy in a mouse model of melanoma. Brain, Behavior, and Immunity, 2017, 65, 140-149.	2.0	46

#	Article	IF	CITATIONS
37	Newly translated proteins are substrates for ubiquitin, ISG15, and FAT10. FEBS Letters, 2017, 591, 186-195.	1.3	6
38	No prolongation of skin allograft survival by immunoproteasome inhibition in mice. Molecular Immunology, 2017, 88, 32-37.	1.0	6
39	Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget, 2017, 8, 50873-50888.	0.8	61
40	Inhibiting the immunoproteasome exacerbates the pathogenesis of systemic Candida albicans infection in mice. Scientific Reports, 2016, 6, 19434.	1.6	34
41	Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Molecular Immunology, 2016, 69, 99-105.	1.0	12
42	A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes. Nature Chemical Biology, 2016, 12, 523-530.	3.9	122
43	Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa <i>PARP1</i> knock-out cells. Nucleic Acids Research, 2016, 44, gkw859.	6.5	23
44	Inhibition and deficiency of the immunoproteasome subunit LMP7 attenuates LCMVâ€induced meningitis. European Journal of Immunology, 2016, 46, 104-113.	1.6	35
45	The ubiquitin-like modifier FAT10 in cancer development. International Journal of Biochemistry and Cell Biology, 2016, 79, 451-461.	1.2	61
46	The STEAP1 _{262–270} peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLAâ€A*0201 transgenic mice—A new approach to immunotherapy against prostate carcinoma. Prostate, 2016, 76, 456-468.	1.2	15
47	Conjugation of the Ubiquitin Activating Enzyme UBE1 with the Ubiquitin-Like Modifier FAT10 Targets It for Proteasomal Degradation. PLoS ONE, 2015, 10, e0120329.	1.1	25
48	No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes. Immunogenetics, 2015, 67, 51-60.	1.2	15
49	The ubiquitin-like modifier FAT10 in antigen processing and antimicrobial defense. Molecular Immunology, 2015, 68, 129-132.	1.0	28
50	The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nature Immunology, 2015, 16, 950-960.	7.0	49
51	The Ubiquitin-like Modifier FAT10 Is Selectively Expressed in Medullary Thymic Epithelial Cells and Modifies T Cell Selection. Journal of Immunology, 2015, 195, 4106-4116.	0.4	20
52	Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. Journal of Controlled Release, 2015, 216, 121-131.	4.8	17
53	Analgesia in mice with experimental meningitis reduces pain without altering immune parameters. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 183-9.	0.9	9
54	The immunoproteasome: a novel drug target for autoimmune diseases. Clinical and Experimental Rheumatology, 2015, 33, S74-9.	0.4	69

#	Article	IF	CITATIONS
55	Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis. EMBO Molecular Medicine, 2014, 6, 226-238.	3.3	142
56	Investigations into the autoâ€ <scp>FAT</scp> 10ylation of the bispecific <scp>E</scp> 2 conjugating enzyme <scp>UB</scp> A6â€specific <scp>E</scp> 2 enzyme 1. FEBS Journal, 2014, 281, 1848-1859.	2.2	25
57	The effect of trauma-focused therapy on the altered T cell distribution in individuals with PTSD: Evidence from a randomized controlled trial. Journal of Psychiatric Research, 2014, 54, 1-10.	1.5	57
58	The unique functions of tissue-specific proteasomes. Trends in Biochemical Sciences, 2014, 39, 17-24.	3.7	111
59	The ubiquitin-like modifier FAT10 decorates autophagy targeted S <i>almonella</i> and contributes to resistance of mice. Journal of Cell Science, 2014, 127, 4883-93.	1.2	48
60	Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Current Opinion in Chemical Biology, 2014, 23, 16-22.	2.8	56
61	FAT10ylation as a signal for proteasomal degradation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 97-102.	1.9	70
62	The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology, 2013, 25, 74-80.	2.4	214
63	Endosomal trafficking of open Major Histocompatibility Class I conformers—Implications for presentation of endocytosed antigens. Molecular Immunology, 2013, 55, 149-152.	1.0	17
64	Immuno- and Constitutive Proteasomes Do Not Differ in Their Abilities to Degrade Ubiquitinated Proteins. Cell, 2013, 152, 1184-1194.	13.5	99
65	Using Protease Inhibitors in Antigen Presentation Assays. Methods in Molecular Biology, 2013, 960, 31-39.	0.4	3
66	Prostaglandin E2 inhibits IL-23 and IL-12 production by human monocytes through down-regulation of their common p40 subunit. Molecular Immunology, 2013, 53, 274-282.	1.0	37
67	An Artificial PAP Gene Breaks Self-tolerance and Promotes Tumor Regression in the TRAMP Model for Prostate Carcinoma. Molecular Therapy, 2012, 20, 555-564.	3.7	14
68	Ubiquitylation of the chemokine receptor CCR7 enables efficient receptor recycling and cell migration. Journal of Cell Science, 2012, 125, 4463-74.	1.2	41
69	Stable Antigen Is Most Effective for Eliciting CD8 ⁺ T-Cell Responses after DNA Vaccination and Infection with Recombinant Vaccinia Virus <i>In Vivo</i> . Journal of Virology, 2012, 86, 9782-9793.	1.5	43
70	NUB1 modulation of GSK3Î ² reduces tau aggregation. Human Molecular Genetics, 2012, 21, 5254-5267.	1.4	29
71	Immunoproteasome Subunit LMP7 Deficiency and Inhibition Suppresses Th1 and Th17 but Enhances Regulatory T Cell Differentiation. Journal of Immunology, 2012, 189, 4182-4193.	0.4	122
72	Immuno- and Constitutive Proteasome Crystal Structures Reveal Differences in Substrate and Inhibitor Specificity. Cell, 2012, 148, 727-738.	13.5	410

#	Article	IF	CITATIONS
73	Why the Structure but Not the Activity of the Immunoproteasome Subunit Low Molecular Mass Polypeptide 2 Rescues Antigen Presentation. Journal of Immunology, 2012, 189, 1868-1877.	0.4	43
74	FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nature Communications, 2012, 3, 749.	5.8	65
75	Immunoproteasome-Specific Inhibitors and Their Application. Methods in Molecular Biology, 2012, 832, 391-401.	0.4	18
76	The Inherited Blindness Protein AIPL1 Regulates the Ubiquitin-Like FAT10 Pathway. PLoS ONE, 2012, 7, e30866.	1.1	17
77	The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation. Journal of Cell Science, 2012, 125, 4576-85.	1.2	67
78	Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. Journal of Controlled Release, 2012, 162, 159-166.	4.8	66
79	Detection and Analysis of FAT10 Modification. Methods in Molecular Biology, 2012, 832, 125-132.	0.4	7
80	Attenuation of the cytotoxic T lymphocyte response to lymphocytic choriomeningitis virus in mice subjected to chronic social stress. Brain, Behavior, and Immunity, 2011, 25, 340-348.	2.0	15
81	Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. Journal of Controlled Release, 2011, 151, 278-285.	4.8	41
82	The combination of TLRâ€9 adjuvantation and electroporationâ€mediated delivery enhances <i>in vivo</i> antitumor responses after vaccination with HPVâ€16 E7 encoding DNA. International Journal of Cancer, 2011, 128, 473-481.	2.3	35
83	Tumor eradication by immunotherapy with biodegradable PLGA microspheres—an alternative to incomplete Freund's adjuvant. International Journal of Cancer, 2011, 129, 407-416.	2.3	31
84	Cross-Talk Between TCR and CCR7 Signaling Sets a Temporal Threshold for Enhanced T Lymphocyte Migration. Journal of Immunology, 2011, 187, 5645-5652.	0.4	36
85	The Antiviral Immune Response in Mice Devoid of Immunoproteasome Activity. Journal of Immunology, 2011, 187, 5548-5557.	0.4	44
86	CD8â^' Dendritic Cells and Macrophages Cross-Present Poly(D,L-lactate- <i>co</i> glycolate) Acid Microsphere-Encapsulated Antigen In Vivo. Journal of Immunology, 2011, 187, 2112-2121.	0.4	58
87	Immunoproteasomes are essential for survival and expansion of T cells in virusâ€infected mice. European Journal of Immunology, 2010, 40, 3439-3449.	1.6	70
88	Proteasomes in immune cells: more than peptide producers?. Nature Reviews Immunology, 2010, 10, 73-78.	10.6	292
89	Reduced Immunoproteasome Formation and Accumulation of Immunoproteasomal Precursors in the Brains of Lymphocytic Choriomeningitis Virus-Infected Mice. Journal of Immunology, 2010, 185, 5549-5560.	0.4	57
90	USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nature Communications, 2010, 1, 13.	5.8	75

#	Article	IF	CITATIONS
91	Prevention of Experimental Colitis by a Selective Inhibitor of the Immunoproteasome. Journal of Immunology, 2010, 185, 634-641.	0.4	212
92	The Proteasome Inhibitor Bortezomib Enhances the Susceptibility to Viral Infection. Journal of Immunology, 2009, 183, 6145-6150.	0.4	100
93	Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Letters, 2009, 583, 591-594.	1.3	63
94	A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nature Medicine, 2009, 15, 781-787.	15.2	533
95	Substantial reduction of na \tilde{A} ve and regulatory T cells following traumatic stress. Brain, Behavior, and Immunity, 2009, 23, 1117-1124.	2.0	159
96	Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. Journal of Drug Targeting, 2009, 17, 652-661.	2.1	68
97	Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood, 2009, 113, 2451-2460.	0.6	93
98	Analysis and expression of a cloned pre-T cell receptor gene. Science. 1994. 266: 1208-1212. Journal of Immunology, 2009, 182, 5165-9.	0.4	1
99	Activating the ubiquitin family: UBA6 challenges the field. Trends in Biochemical Sciences, 2008, 33, 230-237.	3.7	101
100	TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine, 2008, 26, 1626-1637.	1.7	232
101	Distinct motifs in the chemokine receptor CCR7 regulate signal transduction, receptor trafficking and chemotaxis. Journal of Cell Science, 2008, 121, 2759-2767.	1.2	45
102	The ubiquitin-like modifier FAT10 interacts with HDAC6 and localizes to aggresomes under proteasome inhibition. Journal of Cell Science, 2008, 121, 4079-4088.	1.2	67
103	Prostaglandin E2 is a key factor for monocyte-derived dendritic cell maturation: enhanced T cell stimulatory capacity despite IDO. Journal of Leukocyte Biology, 2007, 82, 1106-1114.	1.5	60
104	UBE1L2, a Novel E1 Enzyme Specific for Ubiquitin*. Journal of Biological Chemistry, 2007, 282, 23010-23014.	1.6	137
105	Advances in Prostate Cancer Immunotherapies. Drugs and Aging, 2007, 24, 197-221.	1.3	13
106	No essential role for tripeptidyl peptidase II for the processing of LCMV-derived T cell epitopes. European Journal of Immunology, 2007, 37, 896-904.	1.6	31
107	The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials, 2007, 28, 994-1004.	5.7	72
108	A novel cytosolic class I antigenâ€processing pathway for endoplasmicâ€reticulumâ€targeted proteins. EMBO Reports, 2007, 8, 945-951.	2.0	13

#	Article	IF	CITATIONS
109	An Altered T Cell Repertoire in MECL-1-Deficient Mice. Journal of Immunology, 2006, 176, 6665-6672.	0.4	93
110	Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunology, Immunotherapy, 2006, 55, 1524-1533.	2.0	104
111	The UBA Domains of NUB1L Are Required for Binding but Not for Accelerated Degradation of the Ubiquitin-like Modifier FAT10. Journal of Biological Chemistry, 2006, 281, 20045-20054.	1.6	56
112	Opposite Fate of Endocytosed CCR7 and Its Ligands: Recycling versus Degradation. Journal of Immunology, 2006, 177, 2314-2323.	0.4	117
113	Prostaglandin E2 Is Generally Required for Human Dendritic Cell Migration and Exerts Its Effect via EP2 and EP4 Receptors. Journal of Immunology, 2006, 176, 966-973.	0.4	188
114	PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Advanced Drug Delivery Reviews, 2005, 57, 475-482.	6.6	175
115	Dendritic cells generated from patients with androgen-independent prostate cancer are not impaired in migration and T-cell stimulation. Prostate, 2005, 64, 323-331.	1.2	9
116	FAT10, a Ubiquitin-Independent Signal for Proteasomal Degradation. Molecular and Cellular Biology, 2005, 25, 3483-3491.	1.1	172
117	Cross-Presentation of the Long-Lived Lymphocytic Choriomeningitis Virus Nucleoprotein Does Not Require Neosynthesis and Is Enhanced via Heat Shock Proteins. Journal of Immunology, 2005, 175, 796-805.	0.4	64
118	Immunoproteasomes Down-Regulate Presentation of a Subdominant T Cell Epitope from Lymphocytic Choriomeningitis Virus. Journal of Immunology, 2004, 173, 3925-3934.	0.4	92
119	Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. Journal of Immunological Methods, 2004, 287, 109-124.	0.6	74
120	NEDD8 Ultimate Buster-1L Interacts with the Ubiquitin-like Protein FAT10 and Accelerates Its Degradation. Journal of Biological Chemistry, 2004, 279, 16503-16510.	1.6	82
121	A Cytomegalovirus Inhibitor of Gamma Interferon Signaling Controls Immunoproteasome Induction. Journal of Virology, 2004, 78, 1831-1842.	1.5	69
122	CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood, 2004, 103, 1595-1601.	0.6	219
123	Long-lived Signal Peptide of Lymphocytic Choriomeningitis Virus Glycoprotein pGP-C. Journal of Biological Chemistry, 2003, 278, 41914-41920.	1.6	71
124	Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 2002, 100, 1354-1361.	0.6	451
125	Interferon-Î ³ inducible exchanges of 20S proteasome active site subunits: Why?. Biochimie, 2001, 83, 367-372.	1.3	135
126	Pronounced up-regulation of the PA28α/β proteasome regulator but little increase in the steady-state content of immunoproteasome during dendritic cell maturation. European Journal of Immunology, 2001, 31, 3271-3280.	1.6	57

#	Article	IF	CITATIONS
127	Expression of hepatitis C virus proteins does not interfere with major histocompatibility complex class I processing and presentation in vitro. Hepatology, 2001, 33, 1282-1287.	3.6	30
128	The Ubiquitin-like Protein FAT10 Forms Covalent Conjugates and Induces Apoptosis. Journal of Biological Chemistry, 2001, 276, 35334-35343.	1.6	144
129	Cutting Edge: Neosynthesis Is Required for the Presentation of a T Cell Epitope from a Long-Lived Viral Protein. Journal of Immunology, 2001, 167, 4801-4804.	0.4	89
130	Immunoproteasomes Largely Replace Constitutive Proteasomes During an Antiviral and Antibacterial Immune Response in the Liver. Journal of Immunology, 2001, 167, 6859-6868.	0.4	157
131	The proteasome regulator PA28α/β can enhance antigen presentation without affecting 20S proteasome subunit composition. European Journal of Immunology, 2000, 30, 3672-3679.	1.6	59
132	Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Medicine, 2000, 6, 1348-1354.	15.2	674
133	The use of LCMV-specific T cell hybridomas for the quantitative analysis of MHC class I restricted antigen presentation. Journal of Immunological Methods, 2000, 237, 199-202.	0.6	13
134	The Selective Proteasome Inhibitors Lactacystin and Epoxomicin Can Be Used to Either Up- or Down-Regulate Antigen Presentation at Nontoxic Doses. Journal of Immunology, 2000, 164, 6147-6157.	0.4	91
135	Evidence for the Existence of a Non-catalytic Modifier Site of Peptide Hydrolysis by the 20 S Proteasome. Journal of Biological Chemistry, 2000, 275, 22056-22063.	1.6	84
136	Overexpression of the Proteasome Subunits LMP2, LMP7, and MECL-1, But Not PA28α/β, Enhances the Presentation of an Immunodominant Lymphocytic Choriomeningitis Virus T Cell Epitope. Journal of Immunology, 2000, 165, 768-778.	0.4	110
137	How an Inhibitor of the HIV-I Protease Modulates Proteasome Activity. Journal of Biological Chemistry, 1999, 274, 35734-35740.	1.6	138
138	Selective proteasome inhibitors: modulators of antigen presentation?. Drug Discovery Today, 1999, 4, 63-71.	3.2	41
139	A ubiquitin-like protein which is synergistically inducible by interferon-γ and tumor necrosis factor-α. European Journal of Immunology, 1999, 29, 4030-4036.	1.6	109
140	Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. European Journal of Immunology, 1999, 29, 4037-4042.	1.6	165
141	The proteasome inhibitor lactacystin prevents the generation of an endoplasmic reticulum leader—derived T cell epitope. Molecular Immunology, 1998, 35, 581-591.	1.0	17
142	Inactivation of a Defined Active Site in the Mouse 20S Proteasome Complex Enhances Major Histocompatibility Complex Class I Antigen Presentation of a Murine Cytomegalovirus Protein. Journal of Experimental Medicine, 1998, 187, 1641-1646.	4.2	47
143	Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Letters, 1997, 413, 27-34.	1.3	60
144	Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-l ³ -modulated proteasome subunits. European Journal of Immunology, 1997, 27, 1182-1187.	1.6	61

#	Article	IF	CITATIONS
145	Coordinated Dual Cleavages Induced by the Proteasome Regulator PA28 Lead to Dominant MHC Ligands. Cell, 1996, 86, 253-262.	13.5	280
146	A Single Residue Exchange Within a Viral CTL Epitope Alters Proteasome-Mediated Degradation Resulting in Lack of Antigen Presentation. Immunity, 1996, 5, 115-124.	6.6	180
147	A third interferon-γ-induced subunit exchange in the 20S proteasome. European Journal of Immunology, 1996, 26, 863-869.	1.6	156
148	A role for the proteasome regulator PA28Î \pm in antigen presentation. Nature, 1996, 381, 166-168.	13.7	350
149	Incorporation of major histocompatibility complex – encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-γ. European Journal of Immunology, 1995, 25, 2605-2611.	1.6	157
150	The Interferon-Î ³ -inducible 11 S Regulator (PA28) and the LMP2/LMP7 Subunits Govern the Peptide Production by the 20 S Proteasome in Vitro. Journal of Biological Chemistry, 1995, 270, 23808-23815.	1.6	212
151	T cell receptor β chain dimers on immature thymocytes from normal mice. European Journal of Immunology, 1993, 23, 1393-1396.	1.6	54
152	A novel disulfide-linked heterodimer on pre—T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell, 1993, 75, 283-294.	13.5	320
153	Preferential positive selection of Vα2+CD8+ T cells in mouse strains expressing both H-2k and T cell receptor Vαa haplotypes: determination with a Vα2-specific monoclonal antibody. European Journal of Immunology, 1992, 22, 399-404.	1.6	79