Matthew Realff

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4992320/matthew-realff-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168
papers5,022
citations35
h-index67
g-index183
ext. papers5,981
ext. citations6.1
avg, IF6.03
L-index

#	Paper	IF	Citations
168	Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. <i>Korean Journal of Chemical Engineering</i> , 2022 , 39, 1-19	2.8	7
167	Assessing the physical potential capacity of direct air capture with integrated supply of low-carbon energy sources 2022 , 12, 170-188		1
166	Discrepancy quantification between experimental and simulated data of CO2 adsorption isotherm using hierarchical Bayesian estimation. <i>Separation and Purification Technology</i> , 2022 , 121371	8.3	O
165	Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. <i>Nature Communications</i> , 2021 , 12, 6166	17.4	3
164	Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. <i>Journal of CO2 Utilization</i> , 2021 , 45, 101405	7.6	8
163	Selective Oxidation of Methane to Methanol over Ceria-Zirconia Supported Mono and Bimetallic Transition Metal Oxide Catalysts. <i>ChemCatChem</i> , 2021 , 13, 2832-2842	5.2	3
162	Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology. <i>Annual Review of Biophysics</i> , 2021 , 50, 303-321	21.1	1
161	Defining Targets for Adsorbent Material Performance to Enable Viable BECCS Processes. <i>Jacs Au</i> , 2021 , 1, 795-806		8
160	NMR Reveals Two Bicarbonate Environments in SBA15-Solid-Amine CO2 Sorbents. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 16759-16765	3.8	1
159	New model for S-shaped isotherm data and its application to process modeling using IAST. <i>Chemical Engineering Journal</i> , 2021 , 420, 127580	14.7	1
158	Integration of Material and Process Design for Kinetic Adsorption Separation. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 2536-2546	3.9	2
157	Thought Experiment on Using Renewable Electricity to Provide Transportation Services. <i>Energy & Energy Fuels</i> , 2021 , 35, 13281-13290	4.1	0
156	Analysis of energetics and economics of sub-ambient hybrid post-combustion carbon dioxide capture. <i>AICHE Journal</i> , 2021 , 67, e17403	3.6	3
155	Perspective - the need and prospects for negative emission technologies - direct air capture through the lens of current sorption process development <i>Korean Journal of Chemical Engineering</i> , 2021 , 38, 2375-2380	2.8	1
154	Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 11931	2.6	O
153	Using Site Heterogeneity in Metal®rganic Frameworks with Bimetallic Open Metal Sites for Olefin/Paraffin Separations. <i>ACS Applied Nano Materials</i> , 2020 , 3, 5291-5300	5.6	4
152	Similarities in Recalcitrant Structures of Industrial Non-Kraft and Kraft Lignin. <i>ChemSusChem</i> , 2020 , 13, 4624-4632	8.3	4

(2020-2020)

151	Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system. <i>Applied Energy</i> , 2020 , 265, 114773	10.7	20
150	Real-Time Optimization of Pulp Mill Operations with Wood Moisture Content Variation. <i>Processes</i> , 2020 , 8, 651	2.9	О
149	Engineering allosteric communication. Current Opinion in Structural Biology, 2020, 63, 115-122	8.1	5
148	Pretreatment Effects on the Surface Chemistry of Small Oxygenates on Molybdenum Trioxide. <i>ACS Catalysis</i> , 2020 , 10, 8187-8200	13.1	7
147	Correction to Bystems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents [Industrial & amp; Engineering Chemistry Research, 2020, 59, 503-505]	3.9	4
146	Bayesian design of experiments for adsorption isotherm modeling. <i>Computers and Chemical Engineering</i> , 2020 , 135, 106774	4	5
145	Solvent Selection for Lignin Value Prior to Pulping. <i>ChemSusChem</i> , 2020 , 13, 267-273	8.3	4
144	How Well Do Approximate Models of Adsorption-Based CO2 Capture Processes Predict Results of Detailed Process Models?. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7097-7108	3.9	35
143	Evolution of Structure and Active Sites during the Synthesis of ZSM-5: From Amorphous to Fully Grown Structure. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2439-2449	3.8	6
142	Hierarchical Bayesian estimation for adsorption isotherm parameter determination. <i>Chemical Engineering Science</i> , 2020 , 214, 115435	4.4	11
141	Mechanocatalytic Ammonia Synthesis over TiN in Transient Microenvironments. <i>ACS Energy Letters</i> , 2020 , 5, 3362-3367	20.1	9
140	Efficient Evaluation of Vacuum Pressure-swing Cycle Performance using Surrogate-based, Multi-objective Optimization Algorithm. <i>Computer Aided Chemical Engineering</i> , 2020 , 1801-1806	0.6	1
139	Continuous Liquid-Phase Upgrading of Dihydroxyacetone to Lactic Acid over Metal Phosphate Catalysts. <i>ACS Catalysis</i> , 2020 , 10, 11936-11950	13.1	9
138	Lifecycle greenhouse gas emissions for an ethanol production process based on genetically modified cyanobacteria: CO2 sourcing options. <i>Biofuels, Bioproducts and Biorefining</i> , 2020 , 14, 1324-133	34 ^{5.3}	3
137	Identification of the Active Sites in the Dehydrogenation of Methanol on Pt/Al2O3 Catalysts. Journal of Physical Chemistry C, 2020 , 124, 19015-19023	3.8	6
136	Nickel Speciation and Methane Dry Reforming Performance of Ni/CexZr1NO2 Prepared by Different Synthesis Methods. <i>ACS Catalysis</i> , 2020 , 10, 11235-11252	13.1	25
135	Managing uncertainty in data-driven simulation-based optimization. <i>Computers and Chemical Engineering</i> , 2020 , 136, 106519	4	20
134	Hot spot generation, reactivity, and decay in mechanochemical reactors. <i>Chemical Engineering Journal</i> , 2020 , 382, 122954	14.7	11

133	Cyclopentadiene Dimerization Kinetics in the Presence of C5 Alkenes and Alkadienes. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 22516-22525	3.9	5
132	Prospects and Challenges for Solar Fertilizers. <i>Joule</i> , 2019 , 3, 1578-1605	27.8	54
131	The Role of Brfisted and Water-Tolerant Lewis Acid Sites in the Cascade Aqueous-Phase Reaction of Triose to Lactic Acid. <i>ChemCatChem</i> , 2019 , 11, 3054-3063	5.2	28
130	Welcome to the Journal of Advanced Manufacturing and Processing. <i>Journal of Advanced Manufacturing and Processing</i> , 2019 , 1, e10010	2.7	
129	Techno-economic analysis of 1,4-butanediol production by a single-step bioconversion process. <i>Biofuels, Bioproducts and Biorefining</i> , 2019 , 13, 1261-1273	5.3	13
128	A parametric study of the techno-economics of direct CO2 air capture systems using solid adsorbents. <i>AICHE Journal</i> , 2019 , 65, e16607	3.6	19
127	Adsorption Process Intensification through Structured Packing: A Modeling Study Using Zeolite 13X and a Mixture of Propylene and Propane in Hollow-Fiber and Packed Beds. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5750-5767	3.9	8
126	Silica-Supported Hindered Aminopolymers for CO2 Capture. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 22551-22560	3.9	14
125	The logic of efficiency and other metrics. <i>Journal of Advanced Manufacturing and Processing</i> , 2019 , 1,	2.7	1
124	Transformations of FCC catalysts and carbonaceous deposits during repeated reaction-regeneration cycles. <i>Catalysis Science and Technology</i> , 2019 , 9, 6977-6992	5.5	8
123	Techno-economic analysis of water precipitation for lignin value prior to pulping. <i>Chemical Engineering Research and Design</i> , 2019 , 143, 4-10	5.5	5
122	Thermodynamic Limitations of the Catalyst Design Space for Methanol Production from Methane. <i>ChemCatChem</i> , 2019 , 11, 593-600	5.2	11
121	Moving Beyond Adsorption Capacity in Design of Adsorbents for CO2 Capture from Ultradilute Feeds: Kinetics of CO2 Adsorption in Materials with Stepped Isotherms. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 366-377	3.9	30
120	Development of Phase-Change-Based Thermally Modulated Fiber Sorbents. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5768-5776	3.9	9
119	Organosilane-Assisted Synthesis of Hierarchical MCM-22 Zeolites for Condensation of Glycerol into Bulky Products. <i>Crystal Growth and Design</i> , 2019 , 19, 231-241	3.5	8
118	Critical Comparison of Structured Contactors for Adsorption-Based Gas Separations. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2018 , 9, 129-152	8.9	26
117	Coupling of Methane to Ethane, Ethylene, and Aromatics over Nickel on Cerialirconia at Low Temperatures. <i>ChemCatChem</i> , 2018 , 10, 2700-2708	5.2	11
116	N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3-Aminopropylsilyl Grafted to SBA-15 Mesoporous Silica. <i>Environmental Science & Environmental Science & Environment</i>	10.3	19

115	Control of interfacial acidinetal catalysis with organic monolayers. <i>Nature Catalysis</i> , 2018 , 1, 148-155	36.5	49
114	Enhanced Hydrothermal Stability of EAlO Catalyst Supports with Alkyl Phosphonate Coatings. <i>Langmuir</i> , 2018 , 34, 3619-3625	4	26
113	Quenching of reactive intermediates during mechanochemical depolymerization of lignin. <i>Catalysis Today</i> , 2018 , 302, 180-189	5.3	31
112	Machine learning: Overview of the recent progresses and implications for the process systems engineering field. <i>Computers and Chemical Engineering</i> , 2018 , 114, 111-121	4	157
111	Direct Air Capture of CO 2 in Enclosed Environments: Design under Uncertainty and Techno-Economic Analysis. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 2179-2184	0.6	5
110	Silica-Supported Sterically Hindered Amines for CO Capture. <i>Langmuir</i> , 2018 , 34, 12279-12292	4	31
109	The "Missing" Bicarbonate in CO Chemisorption Reactions on Solid Amine Sorbents. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8648-8651	16.4	41
108	Spectroscopic Characterization of Adsorbed CO on 3-Aminopropylsilyl-Modified SBA15 Mesoporous Silica. <i>Environmental Science & Environmental &</i>	10.3	28
107	Applying Direct Yellow 11 to a modified Simons staining assay. Cellulose, 2017, 24, 2367-2373	5.5	9
106	Relationship between Acid B ase Properties and the Activity of ZrO2-Based Catalysts for the Cannizzaro Reaction of Pyruvaldehyde to Lactic Acid. <i>ChemCatChem</i> , 2017 , 9, 2675-2683	5.2	30
105	Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty. <i>Applied Energy</i> , 2017 , 195, 616-633	10.7	62
104	Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 750-764	3.9	71
103	Effect of Humidity on the CO2 Adsorption of Tertiary Amine Grafted SBA-15. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 23480-23487	3.8	48
102	Hierarchical Ga-MFI Catalysts for Propane Dehydrogenation. <i>Chemistry of Materials</i> , 2017 , 29, 7213-722	2 9.6	58
101	Produktion von Methanol und Ethanol aus Methan in einem einzigen Reaktor mit einem Nickeloxid auf Ceroxid-Zirconiumoxid-Katalysator. <i>Angewandte Chemie</i> , 2017 , 129, 14064-14069	3.6	3
100	Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13876-13881	16.4	38
99	Elucidation of Surface Species through in Situ FTIR Spectroscopy of Carbon Dioxide Adsorption on Amine-Grafted SBA-15. <i>ChemSusChem</i> , 2017 , 10, 266-276	8.3	81
98	Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts. <i>ACS Catalysis</i> , 2016 , 6, 5873-5886	13.1	94

97	Steric Effect and Evolution of Surface Species in the Hydrodeoxygenation of Bio-Oil Model Compounds over Pt/HBEA. <i>ACS Catalysis</i> , 2016 , 6, 1292-1307	13.1	71
96	Uncertainty quantification via bayesian inference using sequential monte carlo methods for CO2 adsorption process. <i>AICHE Journal</i> , 2016 , 62, 3352-3368	3.6	13
95	On thermodynamic separation efficiency: Adsorption processes. <i>AICHE Journal</i> , 2016 , 62, 3699-3705	3.6	38
94	Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal Drganic Framework Cu3(BTC)2. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 5043-5	033	16
93	An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles. <i>Biotechnology Progress</i> , 2015 , 31, 25-34	2.8	8
92	Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents. <i>Computers and Chemical Engineering</i> , 2015 , 81, 376-388	4	17
91	Optimal Harvest Management Adaptation for a New Biorefinery Investment in Timberlands Supply Chain Using a Modified Cyclic Scheduling Model. <i>Computer Aided Chemical Engineering</i> , 2015 , 36, 521-554	0.6	1
90	Two stage stochastic bilevel programming model of a pre-established timberlands supply chain with biorefinery investment interests. <i>Computers and Chemical Engineering</i> , 2015 , 73, 141-153	4	27
89	New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 10884-9	11.5	28
88	Anthropogenic CO2 as a feedstock for the production of algal-based biofuels. <i>Biofuels, Bioproducts and Biorefining</i> , 2015 , 9, 72-81	5.3	13
87	Modeling and experimental validation of carbon dioxide sorption on hollow fibers loaded with silica-supported poly(ethylenimine). <i>Chemical Engineering Journal</i> , 2015 , 259, 737-751	14.7	26
86	An Extended Constrained Total Least-Squares Method for the Identification of Genetic Networks from Noisy Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 10583-10592	3.9	
85	Optimization and Technoeconomic Analysis of Rapid Temperature Swing Adsorption Process for Carbon Capture from Coal-Fired Power Plant. <i>Computer Aided Chemical Engineering</i> , 2015 , 36, 253-278	0.6	3
84	Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts. <i>ChemSusChem</i> , 2015 , 8, 2073-83	8.3	88
83	Understanding DABCO Nanorotor Dynamics in Isostructural Metal-Organic Frameworks. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 812-6	6.4	30
82	CO2 Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling Study. <i>Industrial & Experimental Chemistry Research</i> , 2015 , 54, 1783-179	5 ^{3.9}	22
81	Dynamic Modelling and Optimal Design of the Solid-Phase Reactive Chromatographic Separation System for Biomass Saccharification via Acid Hydrolysis. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 929-934	0.6	
80	Protein engineering of cellulases. <i>Current Opinion in Biotechnology</i> , 2014 , 29, 139-45	11.4	44

79	Bioreactor-based fuel systems. I: Optimal production capacity considering start-up dynamics. <i>Computers and Chemical Engineering</i> , 2014 , 71, 141-153	4	3
78	Role of Lewis and Brflsted Acid Sites in the Dehydration of Glycerol over Niobia. <i>ACS Catalysis</i> , 2014 , 4, 3180-3192	13.1	124
77	Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. <i>Green Chemistry</i> , 2014 , 16, 885-896	10	99
76	Solid-Phase Reactive Chromatographic Separation System: Optimization-Based Design and Its Potential Application to Biomass Saccharification via Acid Hydrolysis. <i>Industrial & Designation of Chemistry Research</i> , 2014 , 53, 15946-15961	3.9	3
75	Modeling of rapid temperature swing adsorption using hollow fiber sorbents. <i>Chemical Engineering Science</i> , 2014 , 113, 62-76	4.4	43
74	Analysis and comparison of single period single level and bilevel programming representations of a pre-existing timberlands supply chain with a new biorefinery facility. <i>Computers and Chemical Engineering</i> , 2014 , 68, 242-254	4	15
73	A Real Time Approximate Dynamic Programming Approach: A High Dimensional Supply Chain Application 2014 , 61-88		
72	Bayesian Estimation, Uncertainty Propagation and Design of Experiments for CO2 Adsorption on Amine Sorbents. <i>Computer Aided Chemical Engineering</i> , 2014 , 34, 345-350	0.6	2
71	Effect of Amine Surface Coverage on the Co-Adsorption of CO2 and Water: Spectral Deconvolution of Adsorbed Species. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 4194-200	6.4	139
70	Two Stage Bilevel Programming Approach for Representation of Biorefinery Investment Decision Making in a Pre-Established Timberlands Supply Chain. <i>Computer Aided Chemical Engineering</i> , 2014 , 34, 645-650	0.6	1
69	The Design of a Sustainability Assessment Standard Using Life Cycle Information. <i>Journal of Industrial Ecology</i> , 2013 , 17, 493-503	7.2	5
68	MILP based value backups in partially observed Markov decision processes (POMDPs) with very large or continuous action and observation spaces. <i>Computers and Chemical Engineering</i> , 2013 , 56, 101-	1 1 3	1
67	Design and simulation of an organosolv process for bioethanol production. <i>Biomass Conversion and Biorefinery</i> , 2013 , 3, 199-212	2.3	41
66	SO2 -catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass. <i>Biotechnology Progress</i> , 2013 , 29, 909-16	2.8	33
65	Cost and Energy Savings Using an Optimal Design of Reverse Osmosis Membrane Pretreatment for Dilute Bioethanol Purification. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11132-11141	3.9	26
64	Stability of Pt/EAl2O3 Catalysts in Lignin and Lignin Model Compound Solutions under Liquid Phase Reforming Reaction Conditions. <i>ACS Catalysis</i> , 2013 , 3, 464-473	13.1	68
63	On defect propagation in multi-machine stochastically deteriorating systems with incomplete information. <i>Journal of Process Control</i> , 2012 , 22, 1478-1489	3.9	1
62	Preface: Biomass Conversion Over Heterogeneous Catalysts: Contributions from the 2011 AIChE Annual Meeting. <i>Topics in Catalysis</i> , 2012 , 55, 117-117	2.3	

61	Stability of Pt/EAl2O3 Catalysts in Model Biomass Solutions. <i>Topics in Catalysis</i> , 2012 , 55, 162-174	2.3	78
60	Structural Changes of FAl2O3-Supported Catalysts in Hot Liquid Water. <i>ACS Catalysis</i> , 2011 , 1, 552-561	13.1	205
59	Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. <i>Computers and Chemical Engineering</i> , 2011 , 35, 1738-1751	4	267
58	Design of biomass processing network for biofuel production using an MILP model. <i>Biomass and Bioenergy</i> , 2011 , 35, 853-871	5.3	175
57	A mathematical programming tool for LCI-based product design and case study for a carpet product. <i>Journal of Cleaner Production</i> , 2011 , 19, 1347-1355	10.3	2
56	Cellulose crystallinitya key predictor of the enzymatic hydrolysis rate. FEBS Journal, 2010 , 277, 1571-8	2 5.7	399
55	31P-NMR analysis of bio-oils obtained from the pyrolysis of biomass. <i>Biofuels</i> , 2010 , 1, 839-845	2	33
54	Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. <i>Environmental Science & Environmental & Environme</i>	10.3	101
53	Multi-time scale Markov decision process approach to strategic network growth of reverse supply chains?. <i>Omega</i> , 2010 , 38, 20-32	7.2	10
52	Strategic capacity decision-making in a stochastic manufacturing environment using real-time approximate dynamic programming. <i>Naval Research Logistics</i> , 2010 , 57, 211-224	1.5	7
51	Optimal decision-oriented Bayesian design of experiments. <i>Journal of Process Control</i> , 2010 , 20, 1084-1	09.19	2
50	Point-based standard optimization with life cycle assessment for product design. <i>Computers and Chemical Engineering</i> , 2010 , 34, 1356-1364	4	7
49	Modeling cellulase kinetics on lignocellulosic substrates. <i>Biotechnology Advances</i> , 2009 , 27, 833-848	17.8	308
48	Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. <i>ChemSusChem</i> , 2009 , 2, 665-7	18.3	215
47	Controlled exploration of state space in off-line ADP and its application to stochastic shortest path problems. <i>Computers and Chemical Engineering</i> , 2009 , 33, 2111-2122	4	3
46	Quantitative solid state NMR analysis of residues from acid hydrolysis of loblolly pine wood. <i>Bioresource Technology</i> , 2009 , 100, 4758-65	11	32
45	Proactive Scheduling Strategy Applied to Decoking Operations of an Industrial Naphtha Cracking Furnace System. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 3024-3032	3.9	19
44	Centralized versus decentralized decision-making for recycled material flows. <i>Environmental Science & Environmental &</i>	10.3	10

(2004-2008)

43	Scenario relaxation algorithm for finite scenario-based minthax regret and minthax relative regret robust optimization. <i>Computers and Operations Research</i> , 2008 , 35, 2093-2102	4.6	31
42	Decentralized decision-making and protocol design for recycled material flows. <i>International Journal of Production Economics</i> , 2008 , 116, 325-337	9.3	20
41	Identifying interacting residues using Boolean Learning and Support Vector Machines: case study on mRFP and DsRed proteins. <i>Biotechnology Journal</i> , 2008 , 3, 63-73	5.6	
40	REVERSE PRODUCTION SYSTEMS 2007 , 155-177		1
39	Modeling obsolete computer stock under regional data constraints: An Atlanta case study. <i>Resources, Conservation and Recycling</i> , 2007 , 51, 847-869	11.9	19
38	A Q-Learning-based method applied to stochastic resource constrained project scheduling with new project arrivals. <i>International Journal of Robust and Nonlinear Control</i> , 2007 , 17, 1214-1231	3.6	11
37	Assessing performance and uncertainty in developing carpet reverse logistics systems. <i>Computers and Operations Research</i> , 2007 , 34, 443-463	4.6	109
36	Modeling and inferential control of the batch acetylation of cellulose. AICHE Journal, 2006, 52, 2149-21	69 6	8
35	Approximate dynamic programming: Application to process supply chain management. <i>AICHE Journal</i> , 2006 , 52, 2473-2485	3.6	12
34	Development of Optimal Decoking Scheduling Strategies for an Industrial Naphtha Cracking Furnace System. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 5738-5747	3.9	29
33	A real time adaptive dynamic programming approach for planning and scheduling. <i>Computer Aided Chemical Engineering</i> , 2006 , 21, 1179-1184	0.6	2
32	Pooling for improved screening of combinatorial libraries for directed evolution. <i>Biotechnology Progress</i> , 2006 , 22, 961-7	2.8	29
31	Identifying the interacting positions of a protein using Boolean learning and support vector machines. <i>Computational Biology and Chemistry</i> , 2006 , 30, 268-79	3.6	3
30	Simulation modeling of pooling for combinatorial protein engineering. <i>Journal of Biomolecular Screening</i> , 2005 , 10, 856-64		10
29	Design and Optimization of Drum-type Electrostatic Separators for Plastics Recycling. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3503-3509	3.9	9
28	A unified probabilistic approach for modeling trajectory-based separations. <i>AICHE Journal</i> , 2005 , 51, 2507-2520	3.6	3
27	Support vector machines for learning to identify the critical positions of a protein. <i>Journal of Theoretical Biology</i> , 2005 , 234, 351-61	2.3	12
26	E-waste. <i>Materials Today</i> , 2004 , 7, 40-45	21.8	7

25	Sample average approximation methods for stochastic MINLPs. <i>Computers and Chemical Engineering</i> , 2004 , 28, 333-346	4	38
24	An algorithmic framework for improving heuristic solutions. <i>Computers and Chemical Engineering</i> , 2004 , 28, 1285-1296	4	10
23	An algorithmic framework for improving heuristic solutions. <i>Computers and Chemical Engineering</i> , 2004 , 28, 1297-1307	4	14
22	Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application. <i>Computers and Chemical Engineering</i> , 2004 , 28, 1039-1058	4	62
21	Robust reverse production system design for carpet recycling. <i>IIE Transactions</i> , 2004 , 36, 767-776		109
20	Simulation based approach for improving heuristics in stochastic resource-constrained project scheduling problem. <i>Computer Aided Chemical Engineering</i> , 2003 , 15, 439-444	0.6	1
19	Design and optimization of free-fall electrostatic separators for plastics recycling. <i>AICHE Journal</i> , 2003 , 49, 3138-3149	3.6	43
18	EcoWorx, Green Engineering principles in practice. <i>Environmental Science & Environmental Science & En</i>	10.3	13
17	A Framework for Geographically Sensitive and Efficient Recycling Networks. <i>Journal of Environmental Planning and Management</i> , 2003 , 46, 147-165	2.8	7
16	Combining a Geographical Information System and Process Engineering to Design an Agricultural-Industrial Ecosystem. <i>Journal of Industrial Ecology</i> , 2001 , 5, 13-31	7.2	11
15	Connections as a Focus for Model-Building Learning in Engineering. <i>Interactive Learning Environments</i> , 2001 , 9, 101-142	3.1	
14	Strategic design of reverse production systems. Computers and Chemical Engineering, 2000, 24, 991-996	4	47
13	Computer supported collaborative learning for curriculum integration. <i>Computers and Chemical Engineering</i> , 2000 , 24, 1473-1479	4	3
12	Geographic and process information for chemical plant layout problems. AICHE Journal, 1999, 45, 2161-	23184	26
11	Propagation of Interval Values in Simple Processing Networks. <i>INFORMS Journal on Computing</i> , 1999 , 11, 420-431	2.4	
10	Operation of pipeless batch plants []. MILP schedules. <i>Computers and Chemical Engineering</i> , 1998 , 22, 841-855	4	19
9	Analysis of waste vitrification product-process systems. <i>Computers and Chemical Engineering</i> , 1998 , 22, 789-800	4	5
8	Operation of pipeless batch plants [II. Vessel dispatch rules. <i>Computers and Chemical Engineering</i> , 1998 , 22, 857-866	4	11

LIST OF PUBLICATIONS

7	On the Application of Explanation-Based Learning to Acquire Control Knowledge for Branch and Bound Algorithms. <i>INFORMS Journal on Computing</i> , 1998 , 10, 56-71	2.4	2
6	Design of standardized, modular, chemical processes. <i>Computers and Chemical Engineering</i> , 1996 , 20, S435-S441	4	
5	Intelligence in Numerical Computing: Improving Batch Scheduling Algorithms through Explanation-Based Learning. <i>Advances in Chemical Engineering</i> , 1995 , 22, 549-610	0.6	
4	Heat Transfer Enhancement in Fin Channels Using Aeroelastically Fluttering Reeds. <i>Journal of Advanced Manufacturing and Processing</i> ,e10110	2.7	O
3	A Real Time Approximate Dynamic Programming Approach: A High Dimensional Supply Chain Applica	ation61-	88
2	Production of active pharmaceutical ingredients (APIs) from lignin-derived phenol and catechol. Green Chemistry,	10	4
1	Global evaluation of economics of microalgae-based biofuel supply chain using GIS-based framework. <i>Korean Journal of Chemical Engineering</i> ,1	2.8	О