
Elizabeth Catlos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/499222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research, 2001, 106, 16177-16204.	3.3	281
2	A Late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism. Earth and Planetary Science Letters, 1997, 146, E1-E7.	4.4	279
3	A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 1998, 103, 27017-27032.	3.3	268
4	Kinematic model for the Main Central thrust in Nepal. Geology, 2003, 31, 359.	4.4	187
5	Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics, 2004, 23, n/a-n/a.	2.8	187
6	Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. Journal of Asian Earth Sciences, 2002, 20, 459-479.	2.3	181
7	Interpretation of monazite ages obtained via in situ analysis. Chemical Geology, 2002, 188, 193-215.	3.3	140
8	Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, north-east India. Journal of Metamorphic Geology, 2004, 22, 207-226.	3.4	136
9	U-Th-Pb Dating of Phosphate Minerals. Reviews in Mineralogy and Geochemistry, 2002, 48, 524-558.	4.8	135
10	Pressure-temperature-time path discontinuity in the Main Central thrust zone, central Nepal. Geology, 2001, 29, 571.	4.4	120
11	Monazite ages and the evolution of the Menderes Massif, western Turkey. International Journal of Earth Sciences, 2005, 94, 204-217.	1.8	95
12	The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. Journal of Asian Earth Sciences, 1999, 17, 755-772.	2.3	90
13	Th-Pb ion-microprobe dating of allanite. American Mineralogist, 2000, 85, 633-648.	1.9	85
14	Versatile Monazite: resolving geological records and solving challenges in materials science: Generalizations about monazite: Implications for geochronologic studies. American Mineralogist, 2013, 98, 819-832.	1.9	62
15	Phengite-Based Chronology of K- and Ba-Rich Fluid Flow in Two Paleosubduction Zones. Science, 2003, 299, 92-95.	12.6	55
16	U–Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj–Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics, 2015, 660, 47-64.	2.2	45
17	Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, western Turkey): Implications for Aegean tectonics. Tectonophysics, 2010, 488, 110-130.	2.2	42
18	The magnetic properties of natural and synthetic (Fe , Mg1â^')2 SiO4 olivines. Earth and Planetary Science Letters, 2009, 284, 516-526.	4.4	41

ELIZABETH CATLOS

#	Article	IF	CITATIONS
19	Postcollisional extensional tectonics and exhumation of the Menderes massif in the Western Anatolia extended terrane, Turkey. , 2006, , .		33
20	A U-Pb zircon age constraint on the oldest-recorded air-breathing land animal. PLoS ONE, 2017, 12, e0179262.	2.5	29
21	Modeling Highâ€Resolution Pressureâ€Temperature Paths Across the Himalayan Main Central Thrust (Central Nepal): Implications for the Dynamics of Collision. Tectonics, 2018, 37, 2363-2388.	2.8	27
22	14. U-Th-Pb Dating of Phosphate Minerals. , 2002, , 523-558.		26
23	Monazite ages from carbonatites and high-grade assemblages along the Kambam Fault (Southern) Tj ETQq $1\ 1$	0.784314 r 1.9	gBT (Overloc
24	Linking microcracks and mineral zoning of detachment-exhumed granites to their tectonomagmatic history: Evidence from the Salihli and Turgutlu plutons in western Turkey (Menderes Massif). Journal of Structural Geology, 2011, 33, 951-969.	2.3	21
25	Timing Aegean extension: Evidence from in situ U–Pb geochronology and cathodoluminescence imaging of granitoids from NW Turkey. Lithos, 2013, 180-181, 92-108.	1.4	21
26	Age and emplacement of the Permian–Jurassic Menghai batholith, Western Yunnan, China. International Geology Review, 2017, 59, 919-945.	2.1	18
27	Geochronologic constraints across the Main Central Thrust shear zone, Bhagirathi River (NW India): Implications for Himalayan tectonics. , 2007, , .		16
28	Long-term exhumation of an Aegean metamorphic core complex granitoids in the Northern Menderes Massif, western Turkey. Numerische Mathematik, 2012, 312, 534-571.	1.4	15
29	Relationships between very high pressure subduction complex assemblages and intrusive granitoids in the Tavşanlı Zone, Sivrihisar Massif, central Anatolia. Tectonophysics, 2013, 595-596, 183-197.	2.2	14
30	Highâ€Resolution Pâ€Tâ€Time Paths Across Himalayan Faults Exposed Along the Bhagirathi Transect NW India: Implications for the Construction of the Himalayan Orogen and Ongoing Deformation. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009353.	2.5	14
31	Geochemistry and geochronology of meta-igneous rocks from the Tokat Massif, north-central Turkey: implications for Tethyan reconstructions. International Journal of Earth Sciences, 2013, 102, 2175-2198.	1.8	13
32	Nature, age and emplacement of the Spongtang ophiolite, Ladakh, NW India. Journal of the Geological Society, 2019, 176, 284-305.	2.1	11
33	Zircon ages from the Beypazarı granitoid pluton (north central Turkey): tectonic implications. Geodinamica Acta, 2012, 25, 162-182.	2.2	10
34	Myriapod divergence times differ between molecular clock and fossil evidence: U/Pb zircon ages of the earliest fossil millipede-bearing sediments and their significance. Historical Biology, 2021, 33, 2014-2018.	1.4	10
35	Implications for Thrustâ€Related Shortening Punctuated by Extension From Pâ€T Paths and Geochronology of Garnetâ€Bearing Schists, Southern (Çine) Menderes Massif, SW Turkey. Tectonics, 2019, 38, 1974-1998.	2.8	8
36	Evidence for widespread mid-Permian magmatic activity related to rifting following the Variscan orogeny (Western Carpathians). Lithos, 2021, 390-391, 106083.	1.4	8

ELIZABETH CATLOS

#	Article	IF	CITATIONS
37	Whole rock major element influences on monazite growth: examples from igneous and metamorphic rocks in the Menderes Massif, western Turkey. Mineralogia, 2008, 39, 7-30.	0.8	7
38	Monazite geochronology, magmatism, and extensional dynamics within the Menderes Massif, western Turkey. IOP Conference Series: Earth and Environmental Science, 2008, 2, 012013.	0.3	7
39	Myriapod divergence times differ between molecular clock and fossil evidence: U/Pb zircon ages of the earliest fossil millipede-bearing sediments and their significance. Historical Biology, 2021, 33, 2009-2013.	1.4	7
40	Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia). Resources, 2017, 6, 36.	3.5	6
41	Documenting Exhumation in the Central and Northern Menderes Massif (Western Turkey): New Insights from Garnet-Based P-T Estimates and K-Feldspar 40Ar/39Ar Geochronology. Lithosphere, 2020, 2020, .	1.4	5
42	lon microprobe ²³² Th- ²⁰⁸ Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics. Numerische Mathematik, 2016, 316, 470-503.	1.4	4
43	Fluids along the North Anatolian Fault, Niksar basin, north central Turkey: Insight from stable isotopic and geochemical analysis of calcite veins. Journal of Structural Geology, 2017, 101, 58-79.	2.3	4
44	Nepal at Risk: Interdisciplinary Lessons Learned from the April 2015 Nepal (Gorkha) Earthquake and Future Concerns. GSA Today, 2016, 26, 42-43.	2.0	4
45	Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey. IOP Conference Series: Earth and Environmental Science, 2008, 2, 012009.	0.3	3
46	Late Silurian zircon U–Pb ages from the Ludlow and Downton bone beds, Welsh Basin, UK. Journal of the Geological Society, 2021, 178, .	2.1	3
47	Evidence for polymetamorphic garnet growth in the Çine (southern Menderes) Massif, Western Turkey. IOP Conference Series: Earth and Environmental Science, 2008, 2, 012020.	0.3	2
48	Geochemical and Geochronological Data from Charnockites and Anorthosites from India's Kodaikanal–Palani Massif, Southern Granulite Terrain, India. , 2011, , 383-417.		2
49	Kinematic model for the Main Central thrust in Nepal: Comment and Reply. Geology, 2003, 31, e40-e40.	4.4	1
50	Renewed tectonic extrusion of high-grade metamorphic rocks in the MCT footwall since Late Miocene (Sutlej Valley, India). Himalayan Journal of Sciences, 2006, 2, 102-103.	0.3	1
51	Imbrication and Erosional Tectonics Recorded by Garnets in the Sikkim Himalayas. Geosciences (Switzerland), 2022, 12, 146.	2.2	1
52	Vertebrate lies? Arthropods were the first land animals!. Geology Today, 2022, 38, 65-68.	0.9	1
53	Out-of-sequence thrusting in Himalaya: Modification of wedge extrusion and channel flow models. Himalayan Journal of Sciences, 2006, 2, 130.	0.3	0
54	From Mineral Grain to Mountain Range: X-ray Microanalysis, Geochronology, and Himalayan Geology. Microscopy and Microanalysis, 2006, 12, 834-835.	0.4	0

#	Article	IF	CITATIONS
55	Reply to Whitney and Regnier's comments regarding "Monazite Ages and the Evolution of the Menderes Massif, western Turkey―(Int J Earth Sci 94:204–217). International Journal of Earth Sciences, 2006, 95, 352-354.	1.8	Ο
56	ION MICROPROBE ²³² Th- ²⁰⁸ Pb AGES FROM HIGH COMMON Pb MONAZITE, MOREFIELD MINE, AMELIA COUNTY, VIRGINIA: IMPLICATIONS FOR ALLEGHANIAN TECTONICS (AMERICAN) TJ ETC 404-404.	2q0 0 re	gBT_/Overlock
57	Western Carpathian mid-Permian Magmatism: Petrographic, geochemical, and geochronological data. Data in Brief, 2021, 36, 107026.	1.0	Ο
58	Donald D Harrington Symposium on the Geology of the Aegean. IOP Conference Series: Earth and Environmental Science, 2008, 2, 011001.	0.3	0
59	HIGH-RESOLUTION GARNET P-T PATHS FOR THE CENTRAL MENDERES MASSIF, WESTERN TURKEY. , 2016, , .		0
60	RESPONSE TO SLAB ROLL-BACK: REVEALING THE GEODYNAMIC HISTORY OF WESTERN TURKEY FROM THE BIGA PENINSULA TO THE MENDERES MASSIF. , 2016, , .		0
61	DOCUMENTING TRACE ELEMENTS IN HYDROTHERMAL TOURMALINE: NEMAZGAH PLUTON, WESTERN TURKEY. , 2016, , .		0
62	LARGE SCALE CENOZOIC CRUSTAL EXTENSION IN WESTERN ANATOLIA EXTENDED TERRANE (WAET), TURKEY. , 2016, , .		0
63	LESSONS LEARNED FROM AN INTERNATIONAL RESEARCH EXPERIENCE FROM THE UNDERREPRESENTED STUDENT PERSPECTIVE. , 2017, , .		0
64	DEVELOPMENT AND USE OF THE HIGHEST-RESOLUTION GARNET-BASED P-T PATHS. , 2018, , .		0
65	THERMOCHRONOLOGICAL INSIGHTS ON THE TIMING OF THE SLATE ISLANDS IMPACT STRUCTURE, LAKE SUPERIOR, CANADA. , 2018, , .		0
66	EVIDENCE FOR THE ORDOVICIAN METEORITE EVENT IN OKLAHOMA, USA. , 2019, , .		0
67	Combining Analytical Approaches to Decipher Geological Problems: An Example Using the Morefield (Virginia, USA) Monazite Age Standard Using SIMS + LA-ICP-MS + EMPA. , 2020, , .		0
68	UT AUSTIN JACKSON SCHOOL OF GEOSCIENCES ENHANCING DIVERSITY IN GEOSCIENCE GRADUATE EDUCATION (EDGE) PREVIEW: IMPACTS AND PRACTICES. , 2020, , .		0
69	U-PB LA-ICP-MS ZIRCON DATES FROM K-BENTONITES IN THE UPPER ORDOVICIAN OF EASTERN NORTH AMERICA AND BRITAIN. , 2021, , .		0
70	Garnet Chemical Zoning Based Thermobarometry: Method Evaluation and Applications in the Menderes Massif, Western Turkey. Geosciences (Switzerland), 2021, 11, 505.	2.2	0