Takashi Tonozuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Phosphorylation-Dependent Binding of APC to β-Catenin and Its Role in β-Catenin Degradation. Molecular Cell, 2004, 15, 511-521.	4.5	288
2	Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Ã resolution. Journal of Molecular Biology, 1999, 287, 907-921.	2.0	114
3	Complex Structures of Thermoactinomyces vulgaris R-47 α-Amylase 1 with Malto-oligosaccharides Demonstrate the Role of Domain N Acting as a Starch-binding Domain. Journal of Molecular Biology, 2004, 335, 811-822.	2.0	91
4	A Neopullulanase-type <i>α</i> -Amylase Gene from <i>Thermoactinomyces vulgaris</i> R-47. Bioscience, Biotechnology and Biochemistry, 1993, 57, 395-401.	0.6	72
5	Crystal Structures and Structural Comparison of Thermoactinomyces vulgaris R-47 α-Amylase 1 (TVAI) at 1.6à Resolution and α-Amylase 2 (TVAII) at 2.3à Resolution. Journal of Molecular Biology, 2002, 318, 443-453.	2.0	57
6	Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing α-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. BBA - Proteins and Proteomics, 1995, 1252, 35-42.	2.1	54
7	Sugar-binding Sites of the HA1 Subcomponent of Clostridium botulinum Type C Progenitor Toxin. Journal of Molecular Biology, 2008, 376, 854-867.	2.0	48
8	Structural Insights into Substrate Specificity and Function of Glucodextranase. Journal of Biological Chemistry, 2004, 279, 10575-10583.	1.6	43
9	Structural Insights into the Substrate Specificity and Function of Escherichia coli K12 YgjK, a Glucosidase Belonging to the Glycoside Hydrolase Family 63. Journal of Molecular Biology, 2008, 381, 116-128.	2.0	42
10	Mechanism of active site exclusion in a site-specific recombinase: role of the DNA substrate in conferring half-of-the-sitesÂactivity. Genes and Development, 1997, 11, 3061-3071.	2.7	38
11	Crystal Structure of the HA3 Subcomponent of Clostridium botulinum Type C Progenitor Toxin. Journal of Molecular Biology, 2009, 385, 1193-1206.	2.0	37
12	Complexes of Thermoactinomyces vulgaris R-47 α-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS Journal, 2005, 272, 6145-6153.	2.2	35
13	Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the α-amylase genes. Applied Microbiology and Biotechnology, 2001, 56, 465-473.	1.7	34
14	Crystal structure of a lactosucrose-producing enzyme, Arthrobacter sp. K-1 Î ² -fructofuranosidase. Enzyme and Microbial Technology, 2012, 51, 359-365.	1.6	33
15	Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 120-128.	1.9	32
16	Carbohydrate recognition mechanism of HA70 from <i>Clostridium botulinum</i> deduced from Xâ€ray structures in complexes with sialylated oligosaccharides. FEBS Letters, 2012, 586, 2404-2410.	1.3	29
17	Structures of Thermoactinomyces vulgaris R-47 α-Amylase II Complexed with Substrate Analogues. Bioscience, Biotechnology and Biochemistry, 2001, 65, 619-626.	0.6	28
18	Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by <i>Coprinopsisâ€∫cinerea</i> . FEBS Journal, 2010, 277, 1532-1542.	2.2	28

#	Article	IF	CITATIONS
19	Complex Structures of Thermoactinomyces vulgaris R-47 α-Amylase 2 with Acarbose and Cyclodextrins Demonstrate the Multiple Substrate Recognition Mechanism. Journal of Biological Chemistry, 2004, 279, 31033-31040.	1.6	27
20	Molecular diversity of the two sugar-binding sites of the β-trefoil lectin HA33/C (HA1) from Clostridium botulinum type C neurotoxin. Archives of Biochemistry and Biophysics, 2011, 512, 69-77.	1.4	27
21	A convenient enzymatic synthesis of 42-α-isomaltosylisomaltose using Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II). Carbohydrate Research, 1994, 261, 157-162.	1.1	26
22	Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity. Carbohydrate Research, 2005, 340, 2279-2289.	1.1	26
23	Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Biochemical Journal, 2015, 469, 145-158.	1.7	26
24	Crystal structure of a β-fructofuranosidase with high transfructosylation activity from <i>Aspergillus kawachii</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 1786-1795.	0.6	26
25	Crystal structures of open and closed forms of cyclo/maltodextrinâ€binding protein. FEBS Journal, 2009, 276, 3008-3019.	2.2	25
26	Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94. Bioscience, Biotechnology and Biochemistry, 2015, 79, 625-632.	0.6	25
27	Jaw1/LRMP has a role in maintaining nuclear shape via interaction with SUN proteins. Journal of Biochemistry, 2018, 164, 303-311.	0.9	24
28	The Deletion of Amino-Terminal Domain in Thermoactinomyces vulgaris R-47 α-Amylases: Effects of domain N on Activity, Specificity, Stability and Dimerization. Bioscience, Biotechnology and Biochemistry, 2001, 65, 401-408.	0.6	23
29	Binding properties of Clostridium botulinum type C progenitor toxin to mucins. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 551-555.	1.1	23
30	Crystal Structure of Aspergillus niger Isopullulanase, a Member of Glycoside Hydrolase Family 49. Journal of Molecular Biology, 2008, 376, 210-220.	2.0	23
31	The crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) complexed with transglycosylated product. FEBS Journal, 2004, 271, 2530-2538.	0.2	21
32	Kinetic Studies of Site-Directed Mutational Isomalto-dextranase-Catalyzed Hydrolytic Reactions on a 27 MHz Quartz-Crystal Microbalance. Biochemistry, 2005, 44, 9456-9461.	1.2	21
33	Crystal Structure and Mutational Analysis of Isomalto-dextranase, a Member of Glycoside Hydrolase Family 27. Journal of Biological Chemistry, 2015, 290, 26339-26349.	1.6	21
34	Studies on the Hydrolyzing Mechanism for Cyclodextrins of Thermoactinomyces vulgaris R-47 Â-Amylase 2 (TVAII). X-Ray Structure of the Mutant E354A Complexed with Â-Cyclodextrin, and Kinetic Analyses on Cyclodextrins. Journal of Biochemistry, 2001, 129, 423-428.	0.9	20
35	Structure of a complex of Thermoactinomyces vulgaris R-47 α-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Carbohydrate Research, 2006, 341, 1041-1046.	1.1	20
36	Structural basis for cyclodextrin recognition by Thermoactinomyces vulgaris cyclo/maltodextrin-binding protein. FEBS Journal, 2007, 274, 2109-2120.	2.2	20

ΤΑΚΑSΗΙ ΤΟΝΟΖUKA

#	Article	IF	CITATIONS
37	The relative contribution of mannose salvage pathways to glycosylation in PMIâ€deficient mouse embryonic fibroblast cells. FEBS Journal, 2008, 275, 788-798.	2.2	20
38	A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1562-1567.	0.6	20
39	Characterization of fructooligosaccharide metabolism and fructooligosaccharide-degrading enzymes in human commensal butyrate producers. Gut Microbes, 2021, 13, 1-20.	4.3	20
40	Role of Phe286 in the recognition mechanism of cyclomaltooligosaccharides (cyclodextrins) by Thermoactinomyces vulgaris R-47 α-amylase 2 (TVAII). X-ray structures of the mutant TVAIIs, F286A and F286Y, and kinetic analyses of the Phe286-replaced mutant TVAIIs. Carbohydrate Research, 2001, 334, 309-313.	1.1	18
41	Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Applied Microbiology and Biotechnology, 2014, 98, 6667-6677.	1.7	18
42	Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from <i>Coprinopsis cinerea</i> – a tweezerâ€kke motion in the structure of CcCel6C. FEBS Journal, 2012, 1871-1882.	27.9,	17
43	Structural insights into polysaccharide recognition by <i>FlavobacteriumÂjohnsoniae</i> dextranase, a member of glycoside hydrolase family 31. FEBS Journal, 2020, 287, 1195-1207.	2.2	17
44	Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase. FEBS Journal, 2004, 271, 4420-4427.	0.2	16
45	Heterologous expression and characterization of processing α-glucosidase I from Aspergillus brasiliensis ATCC 9642. Glycoconjugate Journal, 2011, 28, 563-571.	1.4	16
46	Purification, Characterization, and Subsite Affinities ofThermoactinomyces vulgarisR-47 Maltooligosaccharide-metabolizing Enzyme Homologous to Glucoamylases. Bioscience, Biotechnology and Biochemistry, 2004, 68, 413-420.	0.6	15
47	Structure of the Catalytic Domain of α-l-Arabinofuranosidase from Coprinopsis cinerea, CcAbf62A, Provides Insights into Structure–Function Relationships in Glycoside Hydrolase Family 62. Applied Biochemistry and Biotechnology, 2017, 181, 511-525.	1.4	14
48	The phosphorylation of sorting nexin 5 at serine 226 regulates retrograde transport and macropinocytosis. PLoS ONE, 2018, 13, e0207205.	1.1	14
49	Characterization of Clycoside Hydrolase Family 6 Enzymes from <i>Coprinopsis cinerea</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 1432-1434.	0.6	13
50	Deglycosylated Isopullulanase Retains Enzymatic Activity Journal of Applied Glycoscience (1999), 2000, 47, 287-292.	0.3	13
51	Construction of an Efficient Expression System forAspergillusIsopullulanase inPichia pastoris, and a Simple Purification Method. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1149-1153.	0.6	11
52	Crystal structure of a glycoside hydrolase family 68 Î ² -fructosyltransferase from Beijerinckia indica subsp. indica in complex with fructose. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2508-2520.	0.6	11
53	Cloning and Nucleotide Sequence of the Pullulanase Gene of Thermus thermophilus HB8 and Production of the Enzyme in Escherichia coli. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2090-2094.	0.6	10
54	Heterologous Expression, Purification, and Characterization of an α-Mannosidase Belonging to Glycoside Hydrolase Family 99 of <i>Shewanella amazonensis</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 797-799.	0.6	10

ΤΑΚΑSΗΙ ΤΟΝΟΖUKA

#	Article	IF	CITATIONS
55	Cloning and Expression of .BETAFructofuranosidase Gene from Arthrobacter sp. K-1 Journal of Applied Glycoscience (1999), 2002, 49, 291-296.	0.3	9
56	Facile construction of 1,2-cis glucosidic linkage using sequential oxidation–reduction route for synthesis of an ER processing I±-glucosidase I substrate. Tetrahedron Letters, 2012, 53, 4452-4456.	0.7	9
57	Analysis of Transglucosylation Products of <i>Aspergillus niger</i> α-Glucosidase that Catalyzes the Formation of α-1,2- and α-1,3-Linked Oligosaccharides. Journal of Applied Glycoscience (1999), 2020, 67, 41-49.	0.3	9
58	Crystal structure and substrate-binding mode of GH63 mannosylglycerate hydrolase from Thermus thermophilus HB8. Journal of Structural Biology, 2015, 190, 21-30.	1.3	8
59	The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. Journal of Biochemistry, 2015, 157, 225-234.	0.9	8
60	Analysis of Catalytic Residues ofThermoactinomyces vulgarisR-47 α-Amylase II (TVA II) by Site-directed Mutagenesis. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2692-2695.	0.6	7
61	Rapid evaluation of 1-kestose producing β-fructofuranosidases from <i>Aspergillus</i> species and enhancement of 1-kestose production using a PgsA surface-display system. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1599-1605.	0.6	7
62	A Novel α-Glucosidase of the Glycoside Hydrolase Family 31 from <i>Aspergillus sojae</i> . Journal of Applied Glycoscience (1999), 2019, 66, 73-81.	0.3	7
63	Structure of a bacterial glycoside hydrolase familyÂ63 enzyme in complex with its glycosynthase product, and insights into the substrate specificity. FEBS Journal, 2013, 280, 4560-4571.	2.2	7
64	Crystallization and Preliminary X-Ray Analysis of Thermoactinomyces vulgaris R-47 α-Amylase II. Journal of Structural Biology, 1995, 114, 229-231.	1.3	6
65	Mutual conversion of substrate specificities of Thermoactinomyces vulgaris R-47 α-amylases TVAI and TVAII by site-directed mutagenesis. Carbohydrate Research, 2003, 338, 1553-1558.	1.1	6
66	Crystal structure of the Nâ€ŧerminal domain of a glycoside hydrolase family 131 protein from <i>Coprinopsis cinerea</i> . FEBS Letters, 2013, 587, 2193-2198.	1.3	6
67	Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. Journal of Structural Biology, 2016, 196, 479-486.	1.3	6
68	Jaw1/LRMP increases Ca2+ influx upon GPCR stimulation with heterogeneous effect on the activity of each ITPR subtype. Scientific Reports, 2022, 12, .	1.6	6
69	Crystallization and preliminary X-ray analysis of the HA3 component of <i>Clostridium botulinum</i> type C progenitor toxin. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 1038-1040.	0.7	5
70	Heterologous expression, crystallization and preliminary X-ray characterization of CcCel6C, a glycoside hydrolase family 6 enzyme from the basidiomyceteCoprinopsis cinerea. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 140-143.	0.7	5
71	Enzymatic synthesis of novel branched sugar alcohols mediated by the transglycosylation reaction of pullulan-hydrolyzing amylase II (TVA II) cloned from Thermoactinomyces vulgaris R-47. Carbohydrate Research, 2011, 346, 1842-1847.	1.1	5
72	The N-terminal region of Jaw1 has a role to inhibit the formation of organized smooth endoplasmic reticulum as an intrinsically disordered region. Scientific Reports, 2021, 11, 753.	1.6	5

ΤΑΚΑSΗΙ ΤΟΝΟΖUKA

#	Article	IF	CITATIONS
73	Heterologous Production and Characterization of Arthrobacter globiformis T6 Isomalto-dextranase. Journal of Applied Glycoscience (1999), 2004, 51, 27-32.	0.3	5
74	Crystallization and preliminary X-ray analysis ofEscherichia coliK12 YgjK protein, a member of glycosyl hydrolase family 63. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1284-1285.	2.5	4
75	Cloning of a Gene Cluster for Dextrin Utilization from Thermoactinomyces vulgaris R-47 and Characterization of the Cyclodextrin-binding Protein Journal of Applied Glycoscience (1999), 2002, 49, 107-114.	0.3	4
76	Enzymatic and structural characterization of β-fructofuranosidase from the honeybee gut bacterium Frischella perrara. Applied Microbiology and Biotechnology, 2022, 106, 2455-2470.	1.7	4
77	Structural basis for proteolytic processing of Aspergillus sojae $\hat{I}\pm$ -glucosidase L with strong transglucosylation activity. Journal of Structural Biology, 2022, 214, 107874.	1.3	4
78	Crystallization and preliminary X-ray analysis ofThermoactinomyces vulgarisR-47 maltooligosaccharide-metabolizing enzyme homologous to glucoamylase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 302-304.	0.7	3
79	Molecular Cloning and Characterization of an Enzyme Hydrolyzingp-Nitrophenyl α-D-Glucoside fromBacillus stearothermophilusSA0301. Bioscience, Biotechnology and Biochemistry, 2006, 70, 495-499.	0.6	3
80	Mutagenesis-induced conformational change in domain B of a pullulan-hydrolyzing α-amylase TVA I. Amylase, 2018, 2, 1-10.	0.7	3
81	Modification of the transglucosylation properties of α-glucosidases from <i>Aspergillus oryzae</i> and <i>Aspergillus sojae</i> via a single critical amino acid replacement. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1706-1710.	0.6	3
82	Purification, crystallization and preliminary X-ray analysis of an HA17–HA70 (HA2–HA3) complex from <i>Clostridium botulinum</i> type C progenitor toxin. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 64-67.	0.4	3
83	Glycan detecting tools developed from the Clostridium botulinum whole hemagglutinin complex. Scientific Reports, 2021, 11, 21973.	1.6	3
84	Novel protocol to observe the intestinal tuft cell using transmission electron microscopy. Biology Open, 2022, 11, .	0.6	3
85	Crystallization and preliminary X-ray study of isomaltodextranase fromArthrobacter globiformis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 572-573.	2.5	2
86	Structural Similarity between a Starch-hydrolyzing Enzyme and an N-Glycan-Hydrolyzing Enzyme: Exohydrolases Cleaving α-1,X-Glucosidic Linkages to Produce β-Glucose. Trends in Glycoscience and Glycotechnology, 2011, 23, 93-102.	0.0	1
87	Enzymes for Cellulosic Biomass Conversion. , 2014, , 225-242.		1
88	A Surface Loop in the N-Terminal Domain of <i>Pedobacter heparinus </i> Heparin Lyase II is Important for Activity. Journal of Applied Glycoscience (1999), 2016, 63, 7-11.	0.3	1
89	Differences in the Characteristics of the Bacterial Community in the Epilithon and River Water as Demonstrated by Plate Counts Using Different Temperatures and Staining Methods Japanese Journal of Limnology, 1994, 55, 193-199.	0.1	1
90	Mutagenesis and Structural Analysis of Thermoactinomyces vulgaris R-47 .ALPHAAmylase II (TVA II). Journal of Applied Glycoscience (1999), 2005, 52, 225-231.	0.3	1

Τακαςμι Τονοζυκα

#	Article	IF	CITATIONS
91	Inactivation of .ALPHAAmylases from Thermoactinomyces vulgaris R-47, TVA I and TVA II, by .OMEGAEpoxyalkyl .ALPHAD-Glucopyranoside. Journal of Applied Glycoscience (1999), 2005, 52, 273-276.	0.3	1
92	Study on Structure and Function of Enzymes Acting on Pullulan and Related Saccharides. Journal of Applied Glycoscience (1999), 2009, 56, 29-33.	0.3	1
93	Purification and Properties of Bacillus sectorramus FERM-P8973 Pullulanase Journal of the Japanese Society of Starch Science, 1992, 39, 7-9.	0.1	1
94	Differences in the characteristics of the bacterial community in the epilithon and river water as demonstrated by plate count and staining methods. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1998, 26, 1641-1644.	0.1	0
95	Crystal Structures and Functions of Two Pullulan-hydrolyzing .ALPHAAmylases from a Thermophilic Actinomycete, Thermoactinomyces vulgaris Journal of Applied Glycoscience (1999), 2001, 48, 163-169.	0.3	0
96	X-ray Crystallographic Study of Glucodextranase from a Gram-positive Bacterium, Arthrobacter globiformis I42. Journal of Applied Glycoscience (1999), 2005, 52, 145-151.	0.3	0
97	Site-Directed Mutagenesis of Tryptophan 622 of Thermoactinomyces vulgaris R-47 Glucoamylase: pH Optima and Activities of Five Mutants. Journal of Applied Glycoscience (1999), 2005, 52, 277-279.	0.3	0
98	[Review: Symposium on Applied Glycoscience] Novel Findings of the Structure and Substrate Specificity of Glucosidases Belonging to Glycoside Hydrolase Family 63. Bulletin of Applied Glycoscience, 2013, 3, 151-158.	0.0	0
99	Traffic of Botulinum Toxin Complex: The Crystal Structure and the Role of Toxin Complex. , 2014, , 1-5.		0
100	Study on Structure and Function of Pullulan-Hydrolyzing Enzymes Journal of Applied Glycoscience (1999), 1999, 46, 179-186.	0.3	0
101	Traffic of Botulinum Toxin Complex: Crystal Structure and Role of Toxin Complex. , 2015, , 955-958.		0