Andreas Vitalis

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4991854/publications.pdf
Version: 2024-02-01

$\left.\begin{array}{lll}\text { Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. } \\ \text { Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8183-8188. }\end{array}\right] .7 .1$

Quantitative Assessments of the Distinct Contributions of Polypeptide Backbone Amides versus Side		
10	Chain Groups to Chain Expansion via Chemical Denaturation. Journal of the American Chemical Society, 2015, 137, 2984-2995.	13.7
11	Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophysical Chemistry, 2011, 159, 14-23.	2.8
Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, $7,13190$.	103	
12	8.8	

Micelle-Like Architecture of the Monomer Ensemble of Alzheimerâ $€^{\text {TM }}$ s Amyloid- \hat{I}^{2} Peptide in Aqueous

Improved Atomistic Monte Carlo Simulations Demonstrate That Poly-<scp>|</scp>-Proline Adopts

17 Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks. Journal of

19	The ATAD2 bromodomain binds different acetylation marks on the histone H 4 in similar fuzzy complexes. Journal of Biological Chemistry, 2017, 292, 16734-16745.	3.4	26
20	A molecular simulation protocol to avoid sampling redundancy and discover new states. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 889-902.	2.4	25
21	A scalable algorithm to order and annotate continuous observations reveals the metastable states visited by dynamical systems. Computer Physics Communications, 2013, 184, 2446-2453.	7.5	24
22	New Estimators for Calculating Solvation Entropy and Enthalpy and Comparative Assessments of Their Accuracy and Precision. Journal of Physical Chemistry B, 2010, 114, 8166-8180.	2.6	23
23	ISIM: A Program for Grand Canonical Monte Carlo Simulations of the lonic Environment of Biomolecules. Molecular Simulation, 2004, 30, 45-61.	2.0	21
24	50 Years of Lifsonâ€"Roig Models: Application to Molecular Simulation Data. Journal of Chemical Theory and Computation, 2012, 8, 363-373.	5.3	21
25	A simple molecular mechanics integrator in mixed rigid body and dihedral angle space. Journal of Chemical Physics, 2014, 141, 034105.	3.0	17
26	High-Resolution Visualisation of the States and Pathways Sampled in Molecular Dynamics Simulations. Scientific Reports, 2014, 4, 6264.	3.3	17
27	<scp>Sapphire</scp>-Based Clustering. Journal of Chemical Theory and Computation, 2020, 16, 6383-6396.	5.3	13

28 On the removal of initial state bias from simulation data. Journal of Chemical Physics, 2019, 150, 104105.
29 Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular
Dynamics Simulations. Journal of Chemical Theory and Computation, 2015, 11, 5481-5492.
5.3 11
30 Equilibrium Sampling Approach to the Interpretation of Electron Density Maps. Structure, 2014, 22,3.39
156-167.
3.0 831 Focused conformational sampling in proteins. Journal of Chemical Physics, 2017, 147, 195102.

