Jan KlusÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991831/publications.pdf

Version: 2024-02-01

		1163117	1199594
55	239	8	12
papers	citations	h-index	g-index
58	58	58	85
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	3D assessment of surface influence on crack initiation in sharp notches under a mixed mode of loading. Theoretical and Applied Fracture Mechanics, 2021, 112, 102920.	4.7	О
2	Comparison of high―and lowâ€frequency fatigue properties of structural steels S355J0 and S355J2. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 3202-3213.	3.4	12
3	Effect of Severe Shot Peening on the Very-High Cycle Notch Fatigue of an AW 7075 Alloy. Metals, 2020, 10, 1262.	2.3	8
4	Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way. MATEC Web of Conferences, 2020, 310, 00034.	0.2	5
5	Generalized Stress Intensity Factors Determination by Overdeterministic Method in Case of Bi-material Junction. Structural Integrity, 2019, , 237-239.	1.4	O
6	An easy and engineering stability criterion of general singular stress concentrators. Theoretical and Applied Fracture Mechanics, 2019, 104, 102341.	4.7	5
7	Very high cycle fatigue tests of high strength steels S355 J0 and S355 J2. Procedia Structural Integrity, 2019, 17, 576-581.	0.8	8
8	The influence of polygonal cavity on fracture behaviour of concrete. Procedia Structural Integrity, 2019, 17, 690-697.	0.8	2
9	Multi-parameter failure assessment of a bi-material V-notch – Crack initiation from a free-edge singularity. Theoretical and Applied Fracture Mechanics, 2019, 100, 233-241.	4.7	4
10	Influence of corrosion on fatigue behaviour of old crane runway steel. Journal of Strain Analysis for Engineering Design, 2019, 54, 416-423.	1.8	5
11	An asymptotic analysis of crack initiation from an interfacial zone surrounding the circular inclusion. Composite Structures, 2019, 208, 479-497.	5.8	4
12	Microcrack interaction with circular inclusion and interfacial zone. Frattura Ed Integrita Strutturale, 2019, 13, 503-512.	0.9	0
13	Multi-parameter average strain energy density factor criterion applied on the bi-material notch problem. Procedia Structural Integrity, 2018, 13, 1261-1266.	0.8	3
14	Multi-parameter average strain energy density factor criterion applied on the sharp material inclusion problem. Procedia Structural Integrity, 2018, 13, 1279-1284.	0.8	2
15	Evaluation of fatigue properties of S355 JO steel using ProFatigue and ProPagation software. Procedia Structural Integrity, 2018, 13, 1494-1501.	0.8	7
16	Influence of the Interfacial Transition Zone on crack behavior in a matrix/aggregate system. Procedia Structural Integrity, 2018, 13, 1798-1803.	0.8	1
17	Comparison of the Fatigue Crack Propagation Rates in S355 J0 and S355 J2 Steel Grades. Key Engineering Materials, 2018, 784, 91-96.	0.4	11
18	Multi-Parameter Fracture Mechanics: Crack Approaching a Bi-Material Interface. Key Engineering Materials, 2018, 784, 79-84.	0.4	1

#	Article	IF	Citations
19	Assessment of Crack Stability in a Quasi-brittle Particle Composite. Procedia Engineering, 2017, 190, 49-53.	1.2	1
20	The influence of non-singular terms on the precision of stress description near a sharp material inclusion tip. Theoretical and Applied Fracture Mechanics, 2017, 90, 85-99.	4.7	10
21	A numerical investigation of the stress intensity factor for a bent chevron notched specimen: Comparison of 2D and 3D solutions. Procedia Structural Integrity, 2017, 5, 737-744.	0.8	2
22	Effect of rivet holes on calibration curves for edge cracks under various loading types in steel bridge structure. Procedia Structural Integrity, 2017, 5, 697-704.	0.8	12
23	Crack onset assessment near the sharp material inclusion tip by means of modified maximum tangential stress criterion. Frattura Ed Integrita Strutturale, 2017, 11, 66-73.	0.9	1
24	Generalised fracture mechanics approach to the interfacial failure analysis of a bonded steel-concrete joint. Frattura Ed Integrita Strutturale, 2017, 11, 147-160.	0.9	8
25	Analytical-Numerical Determination of Stress Distribution around a Tip of Polygon-Like Inclusion. Key Engineering Materials, 2016, 713, 94-98.	0.4	0
26	Behaviour of a crack in a corner or at a tip of a polygon-like particle. Procedia Structural Integrity, 2016, 2, 1912-1919.	0.8	3
27	Reconstruction of a 2D stress field around the tip of a sharp material inclusion. Procedia Structural Integrity, 2016, 2, 1920-1927.	0.8	4
28	The influence of the first non-singular stress terms on crack initiation direction in an orthotropic bi-material plate. Theoretical and Applied Fracture Mechanics, 2014, 71, 67-75.	4.7	9
29	An energetic criterion for a micro-crack of finite length initiated in orthotropic bi-material notches. Engineering Fracture Mechanics, 2013, 110, 396-409.	4.3	9
30	The influence of discontinuity and orthotropy of fracture toughness on conditions of fracture initiation in singular stress concentrators. Engineering Fracture Mechanics, 2013, 110, 438-447.	4.3	11
31	Comparison of Analysis Methods of Data from Thermographic Measurements of Al 2024 Fatigue Limit For R=0.1. Transactions of the VSB: Technical University of Ostrava, 2013, 59, 155-162.	0.1	3
32	Conditions for Crack Initiation in an Orthotropic Bi-Material Notch. Mechanics of Advanced Materials and Structures, 2012, 19, 302-307.	2.6	2
33	Experimental Investigation of the Influence of the Bond Conditions on the Shear Bond Strength between Steel and Self-Compacting Concrete Using Push-Out Tests. Key Engineering Materials, 2012, 525-526, 205-208.	0.4	2
34	Fracture analysis of epoxy-aluminum spacers exposed to pressure loads. Computational Materials Science, 2012, 64, 244-247.	3.0	0
35	Fatigue Strength of Weathering Steel. Medziagotyra, 2012, 18, .	0.2	6
36	Determination of the threshold values of orthotropic bi-material notches. Procedia Engineering, 2010, 2, 1635-1642.	1.2	7

#	Article	IF	CITATIONS
37	Reliability assessment of a bi-material notch: Strain energy density factor approach. Theoretical and Applied Fracture Mechanics, 2010, 53, 89-93.	4.7	19
38	Determination of crack initiation direction from a bi-material notch based on the strain energy density concept. Computational Materials Science, 2007, 39, 214-218.	3.0	19
39	A Bi-Material Wedge – a Model for the Prediction of Failure Initiation at Shape and Material Discontinuities. Key Engineering Materials, 2006, 324-325, 1305-1308.	0.4	0
40	A Comparison of Two Direct Methods of Generalized Stress Intensity Factor Calculations of Bi-Material Notches. Key Engineering Materials, 0, 385-387, 409-412.	0.4	10
41	Study of the Stress Distribution Around an Orthotropic Bi-Material Notch Tip. Key Engineering Materials, 0, 417-418, 385-388.	0.4	7
42	Case Study of Crack Initiation from Bi-Material Notches. Key Engineering Materials, 0, 452-453, 449-452.	0.4	0
43	On the Crack Initiated from the Bi-Material Notch Tip. Key Engineering Materials, 0, 452-453, 441-444.	0.4	3
44	Wedge-Splitting Test â€" Determination of Minimal Starting Notch Length for Various Cement Based Composites Part II: Crack and Notch Fracture Mechanics Approaches. Key Engineering Materials, 0, 452-453, 81-84.	0.4	3
45	Case Criterion of Crack Onset in Orthotropic Bi-Material Notches. Key Engineering Materials, 0, 465, 157-160.	0.4	1
46	Crack Propagation from Bi-Material Notches – Matched Asymptotic Procedure. Key Engineering Materials, 0, 488-489, 416-419.	0.4	1
47	Failure Conditions from Push Out Tests of a Steel-Concrete Joint: Fracture Mechanics Approach. Key Engineering Materials, 0, 488-489, 710-713.	0.4	1
48	Failure Conditions from Push-Out Tests of a Steel-Concrete Joint: Experimental Results. Key Engineering Materials, 0, 488-489, 714-717.	0.4	1
49	The Influence of the Epoxy Interlayer on the Assessment of Failure Conditions of Push-Out Test Specimens. Key Engineering Materials, 0, 525-526, 61-64.	0.4	0
50	On the Direction of a Crack Initiated from an Orthotropic Bi-Material Notch Composed of Materials with Non-Uniform Fracture Mechanics Properties. Key Engineering Materials, 0, 525-526, 545-548.	0.4	0
51	An Effect of the First Non-Singular Term of the Williams Asymptotic Expansion to the Stability of the Bi-Material Orthotropic Notch. Key Engineering Materials, 0, 592-593, 745-748.	0.4	0
52	Bi-Material Notches under Various Normal-Shear Loading Modes. Key Engineering Materials, 0, 577-578, 361-364.	0.4	0
53	Thermographic Determination Methodology: Application on Fatigue Limit of AL 2024 for R=-1. Key Engineering Materials, 0, 577-578, 477-480.	0.4	1
54	Evaluation of Conventional Al 2024 Fatigue Limit in Fatigue Test Using Thermographic Measurement: Effect of Frequency. Advanced Materials Research, 0, 891-892, 1308-1313.	0.3	O

#	Article	lF	CITATIONS
55	Multi-Parameter Based Stress Distribution in Vicinity of Sharp Material Inclusion Tip. Solid State Phenomena, 0, 258, 169-173.	0.3	O