Srinivas Janaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4991623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A facile route to prepare cellulose-based films. Carbohydrate Polymers, 2016, 149, 274-281.	5.1	151
2	Effects of Ripening Temperature on Starch Structure and Gelatinization, Pasting, and Cooking Properties in Rice (<i>Oryza sativa</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 3085-3093.	2.4	89
3	Development of a Low Glycemic Maize Starch:Â Preparation and Characterization. Biomacromolecules, 2006, 7, 1162-1168.	2.6	78
4	Effect of calcium ions on the organization of iota-carrageenan helices: an X-ray investigation. Carbohydrate Research, 2002, 337, 523-535.	1.1	74
5	Trivalent iron induced gelation in lambda-carrageenan. Carbohydrate Polymers, 2012, 87, 2735-2739.	5.1	67
6	Three-dimensional structure of the sodium salt of iota-carrageenan. Carbohydrate Research, 2001, 335, 181-194.	1.1	66
7	The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 2019, 277, 504-514.	4.2	62
8	Structural analysis of BaMg1/3(Ta,Nb)2/3O3 ceramics. Materials Letters, 2002, 55, 414-419.	1.3	45
9	Innovative production of lignin nanoparticles using deep eutectic solvents for multifunctional nanocomposites. International Journal of Biological Macromolecules, 2021, 183, 781-789.	3.6	44
10	Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities. Marine Drugs, 2019, 17, 434.	2.2	43
11	Effect of ε-polylysine addition on κ-carrageenan gel properties: Rheology, water mobility, thermal stability and microstructure. Food Hydrocolloids, 2019, 95, 212-218.	5.6	43
12	Further insights into the evolution of starch assembly during retrogradation using SAXS. International Journal of Biological Macromolecules, 2020, 154, 521-527.	3.6	40
13	Gelation and microstructural properties of protein hydrolysates from trypsin-treated male gonad of scallop (Patinopecten yessoensis) modified by κ-Carrageenan/K+. Food Hydrocolloids, 2019, 91, 182-189.	5.6	39
14	Autoclave and β-Amylolysis Lead to Reduced in Vitro Digestibility of Starch. Journal of Agricultural and Food Chemistry, 2009, 57, 7005-7012.	2.4	36
15	Preparation and Characterization of Size-Controlled Lignin Nanoparticles with Deep Eutectic Solvents by Nanoprecipitation. Molecules, 2021, 26, 218.	1.7	35
16	Encapsulation altered starch digestion: Toward developing starch-based delivery systems. Carbohydrate Polymers, 2014, 101, 600-605.	5.1	33
17	Morphology of Western larch arabinogalactan. Carbohydrate Research, 2002, 337, 2211-2222.	1.1	32
18	Hydrocolloid-based nutraceutical delivery systems. Food and Function, 2012, 3, 503.	2.1	30

SRINIVAS JANASWAMY

#	Article	IF	CITATIONS
19	Insights on the structure and digestibility of sweet potato starch: Effect of postharvest storage of sweet potato roots. International Journal of Biological Macromolecules, 2020, 145, 694-700.	3.6	29
20	Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release. Food Hydrocolloids, 2015, 43, 658-663.	5.6	27
21	Cellulosic fraction from agricultural biomass as a viable alternative for plastics and plastic products. Industrial Crops and Products, 2022, 179, 114692.	2.5	27
22	Impact of urea on the three-dimensional structure, viscoelastic and thermal behavior of iota-carrageenan. Carbohydrate Polymers, 2013, 92, 1873-1879.	5.1	26
23	Alkali-Catalyzed Organosolv Pretreatment of Lignocellulose Enhances Enzymatic Hydrolysis and Results in Highly Antioxidative Lignin. Energy & Fuels, 2021, 35, 5039-5048.	2.5	26
24	The effects of wheat amylose ratios on the structural and physicochemical properties of waxy rice starch using branching enzyme and glucoamylase. Food Hydrocolloids, 2021, 113, 106410.	5.6	25
25	Acetan:glucomannan interactions—a molecular modeling study. Carbohydrate Research, 2003, 338, 2889-2898.	1.1	24
26	Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization. International Journal of Biological Macromolecules, 2021, 191, 514-520.	3.6	24
27	Cation-induced polymorphism in iota-carrageenan. Carbohydrate Polymers, 2005, 60, 499-505.	5.1	23
28	Antioxidant and anti-dyslipidemic effects of polysaccharidic extract from sea cucumber processing liquor. Electronic Journal of Biotechnology, 2017, 28, 1-6.	1.2	22
29	Structural and functional modifications of kudzu starch modified by branching enzyme. International Journal of Food Properties, 2019, 22, 952-966.	1.3	22
30	Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. Nanomaterials, 2019, 9, 1073.	1.9	22
31	Comparison of functional properties of porous starches produced with different enzyme combinations. International Journal of Biological Macromolecules, 2021, 174, 110-119.	3.6	22
32	Properties of Starch Subjected to Partial Gelatinization and β-Amylolysis. Journal of Agricultural and Food Chemistry, 2009, 57, 666-674.	2.4	21
33	Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydrate Polymers, 2014, 103, 234-243.	5.1	21
34	N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (L1): synthesis, oxidation by ruthenium(III) chloride and ligation with ruthenium(II). Crystal structures of L1, its oxidized product and of [RuCl2(p-cymene)·L1]. Journal of Organometallic Chemistry, 2000, 605, 39-44.	0.8	20
35	Role of the Pericarp Cellulose Matrix as a Moisture Barrier in Microwaveable Popcorn. Biomacromolecules, 2005, 6, 1654-1660.	2.6	19
36	Heterogeneity in iota-carrageenan molecular structure: insights for polymorph II→III transition in the presence of calcium ions. Carbohydrate Research, 2008, 343, 364-373.	1.1	19

SRINIVAS JANASWAMY

#	Article	IF	CITATIONS
37	The functionality of laccase- or peroxidase-treated potato flour: Role of interactions between protein and protein/starch. Food Chemistry, 2021, 341, 128082.	4.2	18
38	Structure and in Vitro Digestibility of Normal Corn Starch: Effect of Acid Treatment, Autoclaving, and β-Amylolysis. Journal of Agricultural and Food Chemistry, 2010, 58, 9753-9758.	2.4	17
39	Organized polysaccharide fibers as stable drug carriers. Carbohydrate Polymers, 2013, 94, 209-215.	5.1	17
40	Polysaccharide structures from powder diffraction data: molecular models of arabinan. Carbohydrate Research, 2005, 340, 835-839.	1.1	16
41	Carriers Based on Zein-Dextran Sulfate Sodium Binary Complex for the Sustained Delivery of Quercetin. Frontiers in Chemistry, 2020, 8, 662.	1.8	16
42	Effect of salt addition on iota-carrageenan solution properties. Food Hydrocolloids, 2021, 113, 106491.	5.6	15
43	Cyclic Sî—,N compounds and phosphorus reagents—XV [1]. Synthesis, spectral and X-ray structural characterization of (Ph)(DCA)(R)Pî—»Nî—,S3N3 [Rî—»(C2H5)2N—; (n-C4H9)2N—]. Polyhedron, 1997, 16, 10	89 ¹ 1094.	14
44	Sodium Î ¹ -Carrageenan:Â A Paradigm of Polymorphism and Pseudopolymorphism. Macromolecules, 2006, 39, 3345-3349.	2.2	13
45	Starch digestibility and βâ€carotene bioaccessibility in the orange―fleshed sweet potato pureeâ€wheat bread. Journal of Food Science, 2021, 86, 901-906.	1.5	13
46	Cellulose-based hydrogel beads: Preparation and characterization. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100074.	1.6	11
47	Lignin Nanoparticles and Alginate Gel Beads: Preparation, Characterization and Removal of Methylene Blue. Nanomaterials, 2022, 12, 176.	1.9	10
48	Enhancing mechanical properties of Electrospun Cellulose Acetate Fiber Mat upon Potassium Chloride exposure. Materialia, 2020, 14, 100881.	1.3	9
49	Ordered hydrocolloids networks as delivery vehicles of nutraceuticals: Optimal encapsulation of curcumin and resveratrol. Food Hydrocolloids, 2022, 126, 107466.	5.6	8
50	Crystal structure of (diphenyl)(morpholino)phosphiniminocyclotrithiazene. Journal of Chemical Crystallography, 1996, 26, 403-406.	0.5	7
51	Crystal structure of Ba(Mg1/3Ta2/3)O3 calcinated at 1400°C. Bulletin of Materials Science, 1997, 20, 23-25.	0.8	7
52	Structure analysis on the Ba3Mg(Ta1â^'xNbx)2O9 ceramics: Coexistence of order and disorder. Materials Research Bulletin, 2008, 43, 655-664.	2.7	7
53	Polysaccharide Modification through Green Technology: Role of Endodextranase in Improving the Physicochemical Properties of (1→3)(1→6)-α- <scp>d</scp> -Glucan. Journal of Agricultural and Food Chemistry, 2015, 63, 6450-6456.	2.4	6
54	Preparation and characterization of corn flours with variable starch digestion. Food Chemistry, 2022, 366, 130609.	4.2	6

#	Article	IF	CITATIONS
55	Annealing. , 2018, , 37-49.		6
56	Crystal structure of trismorpholino phosphiniminocyclotrithiazene. Journal of Chemical Crystallography, 2001, 31, 267-270.	0.5	5
57	CONVERSION TO METHYL IODIDE SALT AND SINGLE CRYSTAL X-RAY STRUCTURE OF PHOSPHAZINIUM BROMIDE, [(C6H5)3P[dbnd]N(H)N[dbnd]C(CH3)(i-Bu)]+ Br â^. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 117, 179-187.	0.8	3
58	Crystal structure analysis of (Morpholino)(Phenyl)(Dicyclohexylamino) phosphiniminocyclotrithiazene. Crystallography Reports, 2003, 48, 68-72.	0.1	3
59	Crystal structure analysis of (N-methyl piperazino) (phenyl) (dicyclohexylamino) phosphiniminocyclotrithiazene. Journal of Chemical Crystallography, 2005, 35, 27-34.	0.5	3
60	Ordering in BaMg1/3Ta1/3Nb1/3O3 ceramics: An X-ray Rietveld analysis. Crystallography Reports, 2006, 51, 231-235.	0.1	3
61	S-[(Dicyclohexylamino)(phenyl)(1-pyrrolidinyl)phosphinimino]cyclotrithiazene. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 1250-1252.	0.4	2
62	Crystal structure analysis of norbornadiene adduct of diphenyl hexamethylenimino phosphiniminocyclotrithiazene. Journal of Chemical Crystallography, 2004, 34, 19-23.	0.5	2
63	The aggregation behavior and structure of blends of κâ€carrageenan and εâ€polylysine hydrochloride. Polymer International, 0, , .	1.6	2
64	A novel superabsorbent material based on soybean straw: Synthesis and characterization. Science and Engineering of Composite Materials, 2022, 29, 65-73.	0.6	2
65	SYNTHESIS AND CHARACTERISATION OF Dy2CaCuO5 COMPOUND. Modern Physics Letters B, 1996, 10, 1185-1187.	1.0	1
66	Synthesis and Characterization of La2Ca2Cu2O7 Compound. Modern Physics Letters B, 1998, 12, 991-993.	1.0	1
67	Synthesis and Characterization of A2CaCuO5(A=Nd, Sm). Modern Physics Letters B, 1998, 12, 427-431.	1.0	1
68	Gene dosage effect on starch structure studied using maize polygenic model containing ae and su1 mutant alleles. Food Chemistry, 2011, 125, 1153-1159.	4.2	1
69	Green Physical Processing Technologies for the Improvement of Food Quality. Journal of Food Quality, 2018, 2018, 1-2.	1.4	1
70	Effect of charge balancing cations on the viscoelastic and thermal properties of welan. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100130.	1.6	1
71	Synthesis and Characterization of La2CaCu3O7 Compound. Modern Physics Letters B, 1998, 12, 143-146.	1.0	0
72	Single-Crystal X-Ray Structure and Reactivity of a Triphenylphosphinazine, (C6H5)3PËN‒NËC(H)(C6H4NO2-p). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1315-1323.	0.6	0